

Name Server Daemon (NSD) by NLnet Labs

Welcome to the documentation of the NLnet Labs Name Server Daemon (NSD), an
authoritative DNS name server. It has been developed for operations in
environments where speed, reliability, stability and security are of high
importance.

NSD is designed with a pure philosophy that prioritises raw performance. This means that if you serve hundreds of thousands or even millions of queries per second, NSD is the leading implementation in the world. This authoritative DNS name server strives to be a reference implementation for emerging standards of the Internet Engineering Task Force (IETF). NSD is distributed free of charge in
open source form under the BSD license. For most platforms, packages [https://repology.org/project/nsd/versions] are available.

This documentation is an open source project maintained by NLnet Labs. is edited
via text files in the reStructuredText [http://www.sphinx-doc.org/en/stable/rest.html] markup language and then
compiled into a static website/offline document using the open source Sphinx [http://www.sphinx-doc.org] and ReadTheDocs [https://readthedocs.org/]
tools.

We always appreciate your feedback and improvements. You can submit an issue or
pull request on the GitHub repository [https://github.com/NLnetLabs/nsd-manual/issues], or post a message on the
NSD users [https://lists.nlnetlabs.nl/mailman/listinfo/nsd-users] mailing
list. All the contents are under the permissive Creative Commons Attribution 3.0
(CC-BY 3.0 [https://creativecommons.org/licenses/by/3.0/]) license, with
attribution to NLnet Labs.

Getting Started

	Installation
	Introduction

	Installing with a package manager

	Building from source/Compiling

	Testing

	Configuration
	Configuration file

Running

	Logging

	Using TSIG (Transaction Signature)

	Zone Expiry of Secondary Zones

	Interfaces

	Tuning
	Processor Affinity

	Partition Sockets

	Bind to Device

	Combining Options

Reference

	Manual Pages

	Configure Options

	Diagnosing NSD Log Entries

	Grammar for DNS Zone Files
	Zone File Lexer

	Zone File Grammar

Installation

To install your own copy of NSD you have two options: use the version provided
by your package manager, or download the source and building it yourself.

Installing via the package manager [https://repology.org/project/nsd/versions] is the easiest option, and on most
systems even trivial. The downside is the distributed version can be outdated
for some distributions or not have all the compile-time options included that
you want. Building and compiling NSD yourself ensures that you have the latest
version and all the compile-time options you desire.

Introduction

NSD consists of two programs: the zone compiler zonec and the name server
nsd itself. The name server works with an intermediate database prepared by
the zone compiler from standard zone files.

For NSD operation this means that zones have to be compiled by zonec before
NSD can use them. All this can be controlled via rc.d (SIGTERM, SIGHUP) or
nsd-control, and uses a simple configuration file nsd.conf.

Installing with a package manager

Most package managers maintain a version of NSD, although this version can be
outdated if this package has not been updated recently. If you like to upgrade
to the latest version, we recommend compiling NSD yourself.

Debian/Ubuntu

Installing NSD with the built-in package manager should be as easy as:

sudo apt update
sudo apt install nsd

This gives you a compiled and running version of NSD ready to be
configured.

Building from source/Compiling

Debian/Ubuntu

First of all, we need our copy of the NSD code. On our website [https://nlnetlabs.nl/projects/nsd/about/] you can find the latest version and
the changelog. In this example we’ll use version 4.3.7.

wget https://nlnetlabs.nl/downloads/nsd/nsd-4.3.7.tar.gz
tar xzf nsd-4.3.7.tar.gz

We’ll need some tools, such as a compiler and the make program.

sudo apt update
sudo apt install -y build-essential

The library components NSD needs are: libssl libevent, of which we need
the “dev” version.

sudo apt install -y libssl-dev
sudo apt install -y libevent-dev

We’ll also need the tools to build the actual program. For this, NSD uses
make and internally it uses flex and yacc, which we need to
download as well.

sudo apt-get install -y bison
sudo apt-get install -y flex

With all the requirements met, we can now start the compilation process in the
NSD directory. The first step here is configuring. With ./configure
-h you can look at the extensive list of configurables for NSD. A nice
feature is that configure will tell you what it’s missing during
configuration.

./configure

If configure gives no errors, we can continue to actually try compiling
NSD using make; compilation might take a while.

make

After successfully compiling, we can install NSD to make it available for
the machine.

sudo make install

We now have fully compiled and installed version of NSD, and can continue
to testing it.

Testing

A simple test to determine if the installation was successful is to invoke the
nsd command with the -V option, which is the “version”
option. This shows the version and build options used and proves installation
was successful.

nsd -v

If all the previous steps were successful we can continue to configuring our NSD
instance.

Another handy trick you can use during testing is to run NSD in the foreground
using the -d option and increase the verbosity level using the
-V 3 option. This allows you to see steps NSD takes and also where it
fails.

Now that NSD is installed we can continue to configuring
it.

Configuration

NSD has a vast array of configuration options for advanced use cases. To
configure the application, a nsd.conf configuration file used. The file
format has attributes and values, and some attributes have attributes inside
them.

Configuration file

The configuration is specified in the configuration file, which can be supplied to NSD using the -c option. In `our refence<https://www.nlnetlabs.nl/documentation/nsd/nsd.conf/>`_ (and on your system) an example nsd.conf can be found.

The basic principles are:

	The used notation is attribute: value

	Comments start with # and extend to the end of a line

	Empty lines are ignored, as is whitespace at the beginning of a line

	Quotes can be used, for names containing spaces, e.g. "file name.zone"

The example configuration below specifies options for the NSD server, zone files, primaries and
secondaries.

Here is an example config for example.com:

Example.com nsd.conf file
This is a comment.

server:
 server-count: 1 # use this number of cpu cores
 database: "" # or use "/var/db/nsd/nsd.db"
 zonelistfile: "/var/db/nsd/zone.list"
 username: nsd # the user that will run NSD, can also be "" if user privilige protection is not needed
 logfile: "/var/log/nsd.log" # file where all the log messages go
 pidfile: "/var/run/nsd.pid" # use this pid file instead of the platform specific default
 xfrdfile: "/var/db/nsd/xfrd.state"

zone:
 name: example.com
 zonefile: /etc/nsd/example.com.zone

zone:
 # this server is master, 192.0.2.1 is the secondary.
 name: masterzone.com
 zonefile: /etc/nsd/masterzone.com.zone
 notify: 192.0.2.1 NOKEY
 provide-xfr: 192.0.2.1 NOKEY

zone:
 # this server is secondary, 192.0.2.2 is master.
 name: secondzone.com
 zonefile: /etc/nsd/secondzone.com.zone
 allow-notify: 192.0.2.2 NOKEY
 request-xfr: 192.0.2.2 NOKEY

we provide a sample configuration [https://github.com/NLnetLabs/nsd/blob/master/nsd.conf.sample.in] to get
started.

The server settings start with a line with the keyword server:. In the
server settings set database: <file> with the filename of the name database
that NSD will use. Set chroot: <dir> to run NSD in a chroot-jail. Make sure
the zone files, database file, xfrdfile, difffile and pidfile can be accessed
from the chroot-jail. Set username: <user> to an unprivileged user, for
security.

For example:

This is a sample configuration
server:
 database: "/etc/nsd/nsd.db"
 pidfile: "/etc/nsd/nsd.pid"
 chroot: "/etc/nsd/"
 username: nsd

After the global server settings to need to make entries for the
zones that you wish to serve. For each zone you need to list the zone
name, the file name with the zone contents, and access control lists.

zone:
 name: "example.com"
 zonefile: "example.com.zone"

The zone file needs to be filled with the correct zone information for primary
zones. For secondary zones an empty file will suffice, a zone transfer will be
initiated to obtain the secondary zone contents.

Access control lists are needed for zone transfer and notifications.

For a secondary zone list the masters, by IP address. Below is an example
of a secondary zone with two primary servers. If a primary only supports AXFR
transfers and not IXFR transfers (like NSD), specify the primary as
request-xfr: AXFR <ip_address> <key>. By default, all zone transfer requests
are made over TCP. If you want the IXFR request be transmitted over UDP, use
request-xfr: UDP <ip address> <key>.

zone:
 name: "example.com"
 zonefile: "example.com.zone"
 allow-notify: 168.192.185.33 NOKEY
 request-xfr: 168.192.185.33 NOKEY
 allow-notify: 168.192.199.2 NOKEY
 request-xfr: 168.192.199.2 NOKEY

By default, a secondary will fallback to AXFR requests if the primary told us it
does not support IXFR. You can configure the secondary not to do AXFR fallback
with:

allow-axfr-fallback: "no"

For a primary zone, list the secondary servers, by IP address or subnet. Below
is an example of a primary zone with two secondary servers:

zone:
 name: "example.com"
 zonefile: "example.com.zone"
 notify: 168.192.133.75 NOKEY
 provide-xfr: 168.192.133.75 NOKEY
 notify: 168.192.5.44 NOKEY
 provide-xfr: 168.192.5.44 NOKEY

You also can set the outgoing interface for notifies and zone transfer requests
to satisfy access control lists at the other end:

outgoing-interface: 168.192.5.69

By default, NSD will retry a notify up to five times. You can override that
value with:

notify-retry: 5

Zone transfers can be secured with TSIG keys, replace NOKEY with the name of the
TSIG key to use. See Using TSIG for details.

Since NSD is written to be run on the root name servers, the config file can to
contain something like:

zone:
 name: "."
 zonefile: "root.zone"
 provide-xfr: 0.0.0.0/0 NOKEY # allow axfr for everyone.
 provide-xfr: ::0/0 NOKEY

You should only do that if you’re intending to run a root server, NSD is not
suited for running a . cache. Therefore if you choose to serve the .
zone you have to make sure that the complete root zone is timely and fully
updated.

To prevent misconfiguration, NSD configure has the
--enable-root-server option, that is by default disabled.

In the config file, you can use patterns. A pattern can have the same
configuration statements that a zone can have. And then you can
include-pattern: <name-of-pattern> in a zone (or in another pattern) to
apply those settings. This can be used to organise the settings.

The nsd-control tool is also controlled from the nsd.conf config
file. It uses TLS encrypted transport to 127.0.0.1, and if you want to use it
you have to setup the keys and also edit the config file. You can leave the
remote-control disabled (the secure default), or opt to turn it on:

generate keys
nsd-control-setup

edit nsd.conf to add this
remote-control:
 control-enable: yes

By default nsd-control is limited to localhost, as well as encrypted,
but some people may want to remotely administer their nameserver. What you then
do is setup nsd-control to listen to the public IP address, with
control-interface: <IP> after the control-enable statement.

Furthermore, you copy the key files /etc/nsd/nsd_server.pem
/etc/nsd/nsd_control.* to a remote host on the internet; on that host
you can run nsd-control with -c which
references same IP address control-interface and references the copies of
the key files with server-cert-file, control-key-file and
control-cert-file config lines after the control-enable statement. The
nsd-server authenticates the nsd-control client, and also the
nsd-control client authenticates the nsd-server.

When you are done with the configuration file, check the syntax using

nsd-checkconf <name of configfile>

The zone files are read by the daemon, which builds nsd.db with their
contents. You can start the daemon with:

nsd
or with "nsd-control start" (which execs nsd again).
or with nsd -c <name of configfile>

To check if the daemon is running look with ps, top, or if
you enabled command:nsd-control:

nsd-control status

To reload changed zone files after you edited them, without stopping the daemon,
use this to check if files are modified:

kill -HUP `cat <name of nsd pidfile>`

If you enabled nsd-control, you can re-read with:

nsd-control reload

With nsd-control you can also reread the config file, in case of new
zones, etc.

nsd-control reconfig

To restart the daemon:

/etc/rc.d/nsd restart # or your system(d) equivalent

To shut it down (for example on the system shutdown) do:

kill -TERM <pid of nsd>
or nsd-control stop

NSD will automatically keep track of secondary zones and update them when
needed. When primary zones are updated and reloaded notifications are sent to
secondary servers.

The zone transfers are applied to nsd.db by the daemon. To write
changed contents of the zone files for secondary zones to disk in the text-based
zone file format, issue nsd-control write.

NSD will send notifications to secondary zones if a primary zone is updated. NSD
will check for updates at primary servers periodically and transfer the updated
zone by AXFR/IXFR and reload the new zone contents.

If you wish exert manual control use nsd-control notify,
transfer and force_transfer commands. The transfer
command will check for new versions of the secondary zones hosted by this NSD.
The notify command will send notifications to the secondary servers configured
in notify: statements.

Logging

NSD does not provide any DNS logging. We believe that this is a separate task
and has to be done independently from the core operation. This consciously is
not part of NSD itself in order to keep NSD focused and minimise its complexity.
It is better to leave logging and tracing to separate dedicated tools.

The CAIDA dnsstat tool [https://www.caida.org/catalog/software/dnsstat/] can
easily be configured and/or modified to suit local statistics requirements
without any danger of affecting the name server itself. We have run dnsstat
on the same machine as NSD, and we would recommend using a multiprocessor if
performance is an issue. Of course, dnsstat can also run on a separate machine that
has MAC layer access to the network of the server.

The nsd-control tool can output some statistics, with
nsd-control stats and nsd-control stats_noreset. In
contrib/nsd_munin_ [https://github.com/NLnetLabs/nsd/blob/master/contrib/nsd_munin_] there is a
Munin grapher plugin that uses it. The output of nsd-control stats
is easy to read (text only) with scripts. The output values are documented on
the nsd-control man page.

Another available tool is dnstop [http://dns.measurement-factory.com/tools/dnstop/], which displays DNS
statistics on your network.

Using TSIG (Transaction Signature)

NSD supports TSIG (Transaction Signature) for zone transfer and for notify sending and receiving, for any query to the server.

TSIG keys are based on shared secrets. These must be configured in the config
file. To keep the secret in a separate file use include: "filename" to
include that file.

An example TSIG key named sec1_key.

key:
 name: "sec1_key"
 algorithm: hmac-md5
 secret: "6KM6qiKfwfEpamEq72HQdA=="

This key can then be used for any query to the NSD server. NSD will check if the
signature is valid, and if so, return a signed answer. Unsigned queries will be
given unsigned replies.

The key can be used to restrict the access control lists, for example to only
allow zone transfer with the key, by listing the key name on the access control
line.

provides AXFR to the subnet when TSIG is used.
provide-xfr: 10.11.12.0/24 sec1_key
allow only notifications that are signed
allow-notify: 192.168.0.0/16 sec1_key

If the TSIG key name is used in notify or request-xfr lines, the key is
used to sign the request/notification messages.

Zone Expiry of Secondary Zones

NSD will keep track of the status of secondary zones, according to the timing
values in the SOA record for the zone. When the refresh time of a zone is
reached, the serial number is checked and a zone transfer is started if the zone
has changed. Each primary server is tried in turn.

Master zones cannot expire so they are always served. Zones are interpreted primary zones if
they have no request-xfr: statements in the config file.

After the expire timeout (from the SOA record at the zone apex) is reached, the
zone becomes expired. NSD will return SERVFAIL for expired zones, and will
attempt to perform a zone transfer from any of the primaries. After a zone
transfer succeeds, or if the primary indicates that the SOA serial number is
still the same, the zone will be OK again.

In contrast with e.g. BIND, the inception time for a secondary zone is stored on
disk (in xfrdfile: "xfrd.state"), together with timeouts. If a secondary
zone acquisition time is recent enough, this means that NSD can start serving a
zone immediately on loading, without querying the primary server.

If your secondary zone has expired and no primaries can be reached, but you
still want NSD to serve the zone, then you can delete the xfrd.state
file, but leave the zone file for the zone intact. Make sure to stop NSD before
you delete the file, as NSD writes it on exit. Upon loading NSD will treat the
zone file that you as operator have provided as recent and will serve the zone.
Even though NSD will start to serve the zone immediately, the zone will expire
after the timeout is reached again. NSD will also attempt to confirm that you
have provided the correct data by polling the primaries. So when the primary
servers come back up, it will transfer the updated zone within <retry timeout
from SOA> seconds.

In general it is possible to provide zone files for both primary and secondary
zones manually (say from email or rsync). Reload with SIGHUP or
nsd-control reload to read the new zone file contents into the name
database. When this is done the new zone will be served. For primary zones, NSD
will issue notifications to all configured notify: targets. For secondary
zones the above happens; NSD attempts to validate the zone from the primary
(checking its SOA serial number).

Interfaces

NSD will by default bind itself to the system default interface and service IPv4
and if available also IPv6. It is possible to service only IPv4 or IPv6 using
the -4, -6 command line options, or the ip4-only and
ip6-only config file options.

The command line option -a and config file option ip-address can be
given to bind to specific interfaces. Multiple interfaces can be specified,
which is useful for two reasons:

	The specific interface bound will result in the OS bypassing routing tables for the interface selection. This results in a small performance gain. It is not the performance gain that is the problem: sometimes the routing tables can give the wrong answer, see the next point.

	The answer will be routed via the interface the query came from. This makes sure that the return address on the DNS replies is the same as the query was sent to. Many resolvers require the source address of the replies to be correct. The ip-address: option is easier than configuring the OS routing table to return the DNS replies via the correct interface.

The above means that even for systems with multiple interfaces where you intend
to provide DNS service to all interfaces, it is prudent to specify all the
interfaces as ip-address config file options.

With the config file option ip-transparent you can allow NSD to bind to
non-local addresses.

Tuning

In version 4.3.0 of NSD, additional functionality was added to increase
performance even more. Most notably, this includes processor affinity.

NSD is performant by design because it matters when operators serve hundreds of
thousands or even millions of queries per second. We strive to make the right
choices by default, like enabling the use of libevent at the configure stage
to ensure the most efficient event mechanism is used on a given platform. e.g.
epoll on Linux and kqueue on FreeBSD. Switches are available for
operators who know the implementation on their system behaves correctly, like
enabling the use of recvmmsg at the configure stage (--enable-recvmmsg)
to read multiple messages from a socket in one system call.

By default NSD forks (only) one server. Modern computer systems however, may
have more than one processor, and usually have more than one core per processor.
The easiest way to scale up performance is to simply fork more servers by
configuring server-count: to match the number of cores available in the system
so that more queries can be answered simultaneously. If the operating system
supports it, ensure reuseport: is set to yes to distribute incoming
packets evenly across server processes to balance the load.

A couple of other options that the operator may want to consider:

	Memory usage can be lowered (around 50%) by using zone files and disable the on-disk database by setting database: "".

	TCP capacity can be significantly increased by setting tcp-count: 1000 and tcp-timeout: 3. Set tcp-reject-overflow: yes to prevent the kernel connection queue from growing.

Processor Affinity

The aforementioned settings provide an easy way to increase performance without
the need for in-depth knowledge of the hardware. For operators that require even
more throughput cpu-affinity is available.

The operating system’s scheduling-algorithm determines which core a given task
is allocated to. Processors build up state — e.g. by keeping frequently accessed
data in cache memory — for the task that it is currently executing. Whenever a
task switches cores, performance is degraded because the core it switched to has
yet to build up said state. While this scheduling-algorithm works just fine for
general-purpose computing, operators may want to designate a set of cores for
best performance. The cpu-affinity family of configuration options was added
to NSD specifically for that purpose.

Processor affinity is currently supported on Linux and FreeBSD. Other operating
systems may be supported in the future, but not all operating systems that can
run NSD support CPU pinning. To fully benefit from this feature, one must first
determine which cores should be allocated to NSD. This requires some knowledge
of the underlying hardware, but generally speaking every process should run on a
dedicated core and the use of Hyper-Threading cores should be avoided to prevent
resource contention. List every core designated to NSD in cpu-affinity and
bind each server process to a specific core using server-<N>-cpu-affinity
and xfrd-cpu-affinity to improve L1/L2 cache hit rates and reduce pipeline
stalls/flushes.

server:
 server-count: 2
 cpu-affinity: 0 1 2
 server-1-cpu-affinity: 0
 server-2-cpu-affinity: 1
 xfrd-cpu-affinity: 2

Partition Sockets

ip-address: options in the server: clause can be configured per server
or set of servers. Sockets configured for a specific server are closed by other
servers on startup. This improves performance if a large number of sockets are
scanned using select/poll and avoids waking up multiple servers when a
packet comes in, known as the thundering herd problem [https://en.wikipedia.org/wiki/Thundering_herd_problem]. Though both problems
are solved using a modern kernel and a modern I/O event mechanism, there is one
other reason to partition sockets, explained below.

server:
 ip-address: 192.0.2.1 servers=1

Bind to Device

ip-address: options in the server: clause can now also be configured to bind
directly to the network interface device on Linux (bindtodevice=yes) and to
use a specific routing table on FreeBSD (setfib=<N>). These were added to
ensure UDP responses go out over the same interface the query came in on if
there are multiple interfaces configured on the same subnet, but there may be
some performance benefits as well as the kernel does not have to go through the
network interface selection process.

server:
 ip-address: 192.0.2.1 bindtodevice=yes setfib=<N>

Note

FreeBSD does not create extra routing tables on demand. Consult the
FreeBSD Handbook, forums, etc. for information on how to configure
multiple routing tables.

Combining Options

Field tests have shown best performance is achieved by combining the
aforementioned options so that each network interface is essentially bound to a
specific core. To do so, use one IP address per server process, pin that process
to a designated core and bind directly to the network interface device.

server:
 server-count: 2
 cpu-affinity: 0 1 2
 server-1-cpu-affinity: 0
 server-2-cpu-affinity: 1
 xfrd-cpu-affinity: 2
 ip-address: 192.0.2.1 servers=1 bindtodevice=yes setfib=1
 ip-address: 192.0.2.2 servers=2 bindtodevice=yes setfib=2

The above snippet serves as an example on how to use the configuration options.
Which cores, IP addresses and routing tables are best used depends entirely on
the hardware and network layout. Be sure to test extensively before using the
options.

Manual Pages

You can find the manual pages of the latest version of NSD here, rendered in
HTML format:

	nsd(8) [https://www.nlnetlabs.nl/documentation/nsd/nsd/], the daemon

	nsd.conf(5) [https://www.nlnetlabs.nl/documentation/nsd/nsd.conf/], the extensive configuration file reference

	nsd-checkconf(8) [https://www.nlnetlabs.nl/documentation/nsd/nsd-checkconf/], the configuration checker

	nsd-checkzone(8) [https://www.nlnetlabs.nl/documentation/nsd/nsd-checkzone/], the zone checker

	nsd-control(8) [https://www.nlnetlabs.nl/documentation/nsd/nsd-control/], the nsd control program

Configure Options

NSD can be configured using GNU autoconf’s configure script. In addition to
standard configure options, one may use the following:

	CC=compiler
	Specify the C compiler. The default is gcc or cc. The compiler must support
ANSI C89.

	CPPFLAGS=flags
	Specify the C preprocessor flags. Such as -I<includedir>.

	CFLAGS=flags
	Specify the C compiler flags. These include code generation, optimisation,
warning, and debugging flags. These flags are also passed to the linker.

The default for gcc is -g -O2.

	LD=linker
	Specify the linker (defaults to the C compiler).

	LDFLAGS=flags
	Specify linker flags.

	LIBS=libs
	Specify additional libraries to link with.

	--enable-root-server

	Configure NSD as a root server. Unless this option is specified, NSD will
refuse to serve the . zone as a misconfiguration safeguard.

	--disable-ipv6

	Disables IPv6 support in NSD.

	--enable-checking

	Enable some internal development checks. Useful if you want to modify NSD.
This option enables the standard C “assert” macro and compiler warnings.

This will instruct NSD to be stricter when validating its input. This could
lead to a reduced service level.

	--enable-bind8-stats

	Enables BIND8-like statistics.

	--enable-ratelimit

	Enables rate limiting, based on query name, type and source.

	--enable-draft-rrtypes

	Enables draft RRtypes.

	--with-configdir=dir

	Specified, NSD configuration directory, default /etc/nsd.

	--with-nsd_conf_file=path

	Pathname to the NSD configuration file, default /etc/nsd/nsd.conf.

	--with-pidfile=path

	Pathname to the NSD pidfile, default is platform specific, mostly
/var/run/nsd.pid.

	--with-dbfile=path

	Pathname to the NSD database, default is /etc/nsd/nsd.db.

	--with-zonesdir=dir

	NSD default location for master zone files, default /etc/nsd/.

	--with-user=username

	User name or ID to answer the queries with, default is nsd.

	--with-facility=facility

	Specify the syslog facility to use. The default is LOG_DAEMON. See the
syslog(3) manual page for the available facilities.

	--with-libevent=path

	Specity the location of the libevent library (or libev).
--with-libevent=no uses a builtin portable implementation (select()).

	--with-ssl=path

	Specify the location of the OpenSSL libraries. OpenSSL 0.9.7 or higher is
required for TSIG support.

	--with-start_priority=number

	Startup priority for NSD.

	--with-kill_priority=number

	Shutdown priority for NSD.

	--with-tcp-timeout=number

	Set the default TCP timeout (in seconds). The default is 120 seconds.

	--disable-nsec3

	Disable NSEC3 support. With NSEC3 support enabled, very large zones, also
non-NSEC3 zones, use about 20% more memory.

	--disable-minimal-responses

	Disable minimal responses. If disabled, responses are more likely to get
truncated, resulting in TCP fallback. When enabled (by default) NSD will
leave out RRsets to make responses fit inside one datagram, but for shorter
responses the full normal response is carried.

	--disable-largefile

	Disable large file support (64 bit file lengths). Makes off_t a 32bit length
during compilation.

Diagnosing NSD Log Entries

NSD will print log messages to the system log (or logfile: configuration
entry). Some of these messages are covered here.

	Reload process <pid> failed with status <s>, continuing with old database
	This log message indicates the reload process of NSD has failed for some
reason. This can be anything from a missing database file to internal
errors.

	snipping off trailing partial part of <ixfr.db>
	The file ixfr.db contains only part of expected data. The corruption
is removed by snipping off the trailing part.

	memory recyclebin holds <num> bytes
	This is printed for every reload. NSD allocates and deallocates memory to
service IXFR updates. The recycle bin holds deallocated memory ready for
future use. If the number grows too large, a restart resets it.

	xfrd: max number of tcp connections (32) reached
	This line is printed when more than 32 zones need a zone transfer at the
same time. The value is a compile constant (xfrd-tcp.h), but if this
happens often for you, we could make this a config option. NSD will reuse
existing TCP connections to the same primary (determined by IP address) to
transfer up to 64k zones from that primary. Thus this error should only
happen with more than 32 primaries or more than 64*32=2M zones that need to
be updated at the same time.

If this happens, more zones have to wait until a zone transfer completes
(or is aborted) before they can have a zone transfer too. This waiting
list has no size limit.

	error: <zone> NSEC3PARAM entry <num> has unknown hash algo <number>
	This error means that the zone has NSEC3 chain(s) with hash algorithms that
are not supported by this version of NSD, and thus cannot be served by NSD.
If there are also no NSECs or NSEC3 chain(s) with known hash algorithms, NSD
will not be able to serve DNSSEC authenticated denials for the zone.

Grammar for DNS Zone Files

Note

It is near impossible to write a clean lexer/grammar for DNS
(RFC 1035 [https://tools.ietf.org/html/rfc1035.html]) zone files. At first it looks like it is easy to make
such a beast, but when you start implementing it the details make it
messy.

Since as early as NSD 1.4, the parser relies on Bison and Flex, tools for
building programs that handle structured input. Compared to the previous
implementation there is a slight decrease in speed (10-20%), but as the zone
compiler is not critical to the performance of NSD, this not too relevant. The
lexer part is located in the file zlexer.lex [https://github.com/NLnetLabs/nsd/blob/master/zlexer.lex], the grammar is in
zparser.y [https://github.com/NLnetLabs/nsd/blob/master/zparser.y].

Zone File Lexer

Finding a good grammar and lexer for BIND zone files is rather hard. There are
no real keywords and the meaning of most of the strings depends on the position
relative to the other strings. An example, the following is a valid SOA record:

$ORIGIN example.org.
 SOA soa soa (1 2 3 4 5 6)

This SOA records means the administrator has an email address of
soa@example.org. and the first nameserver is named soa.example.org. Both
completely valid. The numbers are of course totally bogus.

Another example would be:

$ORIGIN example.org.
 SOA soa soa (1 2) (3 4) (5) (6)

The parsing of parentheses was also not trivial. Whitespace is also significant
in zonefiles. The TAB before SOA has to be returned as previous_domain token by
the lexer. Newlines inside parentheses are returned as SPACE which works but
required some changes in the definitions of the resource records.

As shown above a simple grep -i for SOA does not do the trick. The lexer
takes care of this tricky part by using an extra variable in_rr which is an
enum containing: outside, expecting_dname, after_dname,
reading_type. The semantics are as follows:

	outside, not in an RR (start of a line or a $-directive);

	expecting_dname, parse owner name of RR;

	after_dname, parse ttl, class;

	reading_type, we expect the RR type now;

With in_rr the lexer can say that in the first example above the first SOA
is the actual record type, because it is located after a TAB. After we have
found the TAB we set in_rr to after_dname which means we actually are
expecting a RR type.

Again this is also not trivial because the class (IN) and TTL are also optional,
if there are not specified we should substitute the current defaults from the
zone we are parsing (this happens in the grammar). A DNS zone file is further
complicated by the unknown RR record types.

Zone File Grammar

After the lexer was written the grammar itself is quite clean and nice. The
basic idea is that every RR consists of single line (the parentheses are handled
in the lexer - so this really is the case). If a line is not a RR it is either a
comment, empty or a $-directive. Some $-directives are handled inside the lexer
($INCLUDE) while others ($ORIGIN) must be dealt with inside the grammer.

An RR is defined as:

rr: ORIGIN SP rrrest

and:

rrrset: classttl rtype

And then we have a whole list of:

rtype: TXT sp rdata_txt
 | DS sp rdata_ds
 | AAAA sp rdata_aaaa

which are then parsed by using the rdata_ rule. Shown here is the one for
the SOA:

rdata_soa: dname sp dname sp STR sp STR sp STR sp STR sp STR trail
 {
 /* convert the soa data */
 zadd_rdata_domain(current_parser, $1); /* prim. ns */
 zadd_rdata_domain(current_parser, $3); /* email */
 zadd_rdata_wireformat(current_parser, \
 zparser_conv_rdata_period(zone_region, $5.str)); /* serial */
 zadd_rdata_wireformat(current_parser, \
 zparser_conv_rdata_period(zone_region, $7.str)); /* refresh */
 zadd_rdata_wireformat(current_parser, \
 zparser_conv_rdata_period(zone_region, $9.str)); /* retry */
 zadd_rdata_wireformat(current_parser, \
 zparser_conv_rdata_period(zone_region, $11.str)); /* expire */
 zadd_rdata_wireformat(current_parser, \
 zparser_conv_rdata_period(zone_region, $13.str)); /* minimum */

 /* XXX also store the minium in case of no TTL? */
 if ((current_parser->minimum = zparser_ttl2int($11.str)) == -1)
 current_parser->minimum = DEFAULT_TTL;
 };

The semantic actions in the grammer store the RR data for processing by the zone
compiler. The resulting database is then used by NSD the serve the data.

Index

 R

R

 	
 	
 RFC

 	RFC 1035

Zonefile example

On this page we give an example of a basic zone file and it’s contents.

Creating a zone

A zone needs a SOA (Source Of Authority) record. WHY? For the exact structure we refer you to the wiki page LINK https://en.wikipedia.org/wiki/SOA_record.

..code::bash

$ORIGIN example.com. ; ‘default’ domain as FQDN for this zone
$TTL 86400 ; default time-to-live for this zone

	zone.example.com. IN SOA ns.example.com. noc.dns.icann.org. (
	2020080302 ;Serial
7200 ;Refresh
3600 ;Retry
1209600 ;Expire
3600 ;Negative response caching TTL

)

	; The nameserver that are authoritative for this zone. These need to be FQDNs
	NS example.com.

; these are equivalent A records
example.com. A 192.0.1.1
@ A 192.0.1.1

A 192.0.1.1

www @ 192.0.2.1

mail MX 10 example.com.

 _static/plus.png

_static/file.png

_static/minus.png

_static/nsd-duotone-white.png

nav.xhtml

 Table of Contents

 		
 Name Server Daemon (NSD) by NLnet Labs

 		
 Installation

 		
 Introduction

 		
 Installing with a package manager

 		
 Debian/Ubuntu

 		
 Building from source/Compiling

 		
 Debian/Ubuntu

 		
 Testing

 		
 Configuration

 		
 Configuration file

 		
 Logging

 		
 Using TSIG (Transaction Signature)

 		
 Zone Expiry of Secondary Zones

 		
 Interfaces

 		
 Tuning

 		
 Processor Affinity

 		
 Partition Sockets

 		
 Bind to Device

 		
 Combining Options

 		
 Manual Pages

 		
 Configure Options

 		
 Diagnosing NSD Log Entries

 		
 Grammar for DNS Zone Files

 		
 Zone File Lexer

 		
 Zone File Grammar

