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Welcome to the documentation of the NLnet Labs Name Server Daemon (NSD), an authoritative DNS name server. It
has been developed for operations in environments where speed, reliability, stability and security are of high importance.

NSD is designed with a pure philosophy that prioritises raw performance. This means that if you serve hundreds of
thousands or even millions of queries per second, NSD is the leading implementation in the world. This authoritative
DNS name server strives to be a reference implementation for emerging standards of the Internet Engineering Task
Force (IETF). NSD is distributed free of charge in open source form under the BSD license. For most platforms,
packages are available.

This documentation is an open source project maintained by NLnet Labs. is edited via text files in the reStructured-
Text markup language and then compiled into a static website/offline document using the open source Sphinx and
ReadTheDocs tools.

We always appreciate your feedback and improvements. You can submit an issue or pull request on the GitHub repos-
itory, or post a message on the NSD users mailing list. All the contents are under the permissive Creative Commons
Attribution 3.0 (CC-BY 3.0) license, with attribution to NLnet Labs.

GETTING STARTED 1

https://repology.org/project/nsd/versions
http://www.sphinx-doc.org/en/stable/rest.html
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https://readthedocs.org/
https://github.com/NLnetLabs/nsd-manual/issues
https://github.com/NLnetLabs/nsd-manual/issues
https://lists.nlnetlabs.nl/mailman/listinfo/nsd-users
https://creativecommons.org/licenses/by/3.0/
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2 GETTING STARTED



CHAPTER

ONE

INSTALLATION

To install your own copy of NSD you have two options: use the version provided by your package manager, or download
the source and building it yourself.

Installing via the package manager is the easiest option, and on most systems even trivial. The downside is the dis-
tributed version can be outdated for some distributions or not have all the compile-time options included that you want.
Building and compiling NSD yourself ensures that you have the latest version and all the compile-time options you
desire.

1.1 Introduction

NSD consists of two programs: the zone compiler zonec and the name server nsd itself. The name server works with
an intermediate database prepared by the zone compiler from standard zone files.

For NSD operation this means that zones have to be compiled by zonec before NSD can use them. All this can be
controlled via rc.d (SIGTERM, SIGHUP) or nsd-control, and uses a simple configuration file nsd.conf.

1.2 Installing with a package manager

Most package managers maintain a version of NSD, although this version can be outdated if this package has not been
updated recently. If you like to upgrade to the latest version, we recommend compiling NSD yourself .

1.2.1 Debian/Ubuntu

Installing NSD with the built-in package manager should be as easy as:

sudo apt update
sudo apt install nsd

This gives you a compiled and running version of NSD ready to be configured.

3
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1.3 Building from source/Compiling

1.3.1 Debian/Ubuntu

First of all, we need our copy of the NSD code. On our website you can find the latest version and the changelog. In
this example we’ll use version 4.3.7.

wget https://nlnetlabs.nl/downloads/nsd/nsd-4.3.7.tar.gz
tar xzf nsd-4.3.7.tar.gz

We’ll need some tools, such as a compiler and the make program.

sudo apt update
sudo apt install -y build-essential

The library components NSD needs are: libssl libevent, of which we need the “dev” version.

sudo apt install -y libssl-dev
sudo apt install -y libevent-dev

We’ll also need the tools to build the actual program. For this, NSD uses make and internally it uses flex and yacc,
which we need to download as well.

sudo apt-get install -y bison
sudo apt-get install -y flex

With all the requirements met, we can now start the compilation process in the NSD directory. The first step here is
configuring. With ./configure -h you can look at the extensive list of configurables for NSD. A nice feature is that
configure will tell you what it’s missing during configuration.

./configure

If configure gives no errors, we can continue to actually try compiling NSD using make; compilation might take a
while.

make

After successfully compiling, we can install NSD to make it available for the machine.

sudo make install

We now have fully compiled and installed version of NSD, and can continue to testing it.

1.4 Testing

A simple test to determine if the installation was successful is to invoke the nsd command with the -V option, which
is the “version” option. This shows the version and build options used and proves installation was successful.

nsd -v

If all the previous steps were successful we can continue to configuring our NSD instance.

Another handy trick you can use during testing is to run NSD in the foreground using the -d option and increase the
verbosity level using the -V 3 option. This allows you to see steps NSD takes and also where it fails.

4 Chapter 1. Installation
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Now that NSD is installed we can continue to configuring it.

1.4. Testing 5
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6 Chapter 1. Installation



CHAPTER

TWO

CONFIGURATION

NSD has a vast array of configuration options for advanced use cases. To configure the application, a nsd.conf
configuration file used. The file format has attributes and values, and some attributes have attributes inside them.

Note: The instructions in this page assume that NSD is already installed.

7
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8 Chapter 2. Configuration



CHAPTER

THREE

THE CONFIGURATION FILE

The configuration NSD uses is specified in the configuration file, which can be supplied to NSD using the -c option. In
the refence an example nsd.conf can be found as well as the complete documentation of all the configurable options.
The same example and reference can be found on your system using the man unbound.conf command.

The basic rules are of the config file are:

• The used notation is attribute: value

• Comments start with # and extend to the end of a line

• Empty lines are ignored, as is whitespace at the beginning of a line

• Quotes can be used, for names containing spaces, e.g. "file name.zone"

Below we’ll give an example config file, which specifies options for the NSD server, zone files, primaries and secon-
daries. This provide basic config whica can be used for as a starting point

The example configuration below specifies options for the NSD server, zone files, primaries and secondaries.

Here is an example config for example.com:

server:
# use this number of cpu cores
server-count: 1
# We recommend leaving this empty, otherwise use "/var/db/nsd/nsd.db"
database: ""
# the default file used for the nsd-control addzone and delzone commands
# zonelistfile: "/var/db/nsd/zone.list"
# The unprivileged user that will run NSD, can also be set to "" if
# user privilige protection is not needed
username: nsd
# Default file where all the log messages go
logfile: "/var/log/nsd.log"
# Use this pid file instead of the platform specific default
pidfile: "/var/run/nsd.pid"
# Enable if privilege "jail" is needed for unprivileged user. Note
# that other file paths may break when using chroot
# chroot: "/etc/nsd/"
# The default zone transfer file
# xfrdfile: "/var/db/nsd/xfrd.state"
# The default working directory before accessing zone files
# zonesdir: "/etc/nsd"

remote-control:
(continues on next page)

9
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(continued from previous page)

# this allows the use of 'nsd-control' to control NSD. The default is "no"
control-enable: yes
# the interface NSD listens to for nsd-control. The default is 127.0.0.1
control-interface: 127.0.0.1
# the key files that allow the use of 'nsd-control'. The default path is "/etc/nsd/".␣

→˓Create these using the 'nsd-control-setup' utility
server-key-file: /etc/nsd/nsd_server.key
server-cert-file: /etc/nsd/nsd_server.pem
control-key-file: /etc/nsd/nsd_control.key
control-cert-file: /etc/nsd/nsd_control.pem

zone:
name: example.com
zonefile: /etc/nsd/example.com.zone

We recommend not using the database (database: "") as this is will slow down NSD operation. Depending on your
needs, we also recommend keeping the server-count lower or equal to the number of CPU cores your system has.

Optionally, you can control NSD (from the same o r even a different device) by configuring remote-control. Using
this tool, NSD can be controlled (find the reference of all the options here) which makes controling NSD much easier.
If your install does not come with the keys neede for remote-control use pre-made, you can generate the keys using the
nsd-control-setup command, which will create them for you.

You can test the config with nsd-checkconf. This tool will tell you what is wrong with the config and where the error
occurs.

If you are happy with the config and any modifications you may have done, you can create the zone to go with the file
we mentioned in the config. We show an example zone at the zonefile example.

10 Chapter 3. The configuration file
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FOUR

SETTING UP A SECONDARY ZONE

If your needs go further than just a few zones that are managed locally, NSD has got you covered. We won’t go into the
theoretical details of primaries and secondaries here (we recommend this blog), but we will show how to configure it.

The example for a secondary looks like this:

zone:
# this server is the primary, 192.0.2.1 is the secondary.
name: primaryzone.com
zonefile: /etc/nsd/primaryone.com.zone
notify: 192.0.2.1 NOKEY # NOKEY for testing purposes only
provide-xfr: 192.0.2.1 NOKEY # NOKEY for testing purposes only

zone:
# this server is secondary, 192.0.2.2 is primary.
name: secondaryzone.com
zonefile: /etc/nsd/secondaryzone.com.zone
allow-notify: 192.0.2.2 NOKEY # NOKEY for testing purposes only
request-xfr: 192.0.2.2 NOKEY # NOKEY for testing purposes only

Note that the NOKEY keyword above are for testing purposes only, as this can introduce vulnerabilities when used in
production environments.

For a secondary zone we list the primaries by IP address. Below is an example of a secondary zone with two pri-
mary servers. If a primary only supports AXFR transfers and not IXFR transfers (like NSD), specify the primary as
request-xfr: AXFR <ip_address> <key>. By default, all zone transfer requests are made over TCP. If you want
the IXFR request be transmitted over UDP, use request-xfr: UDP <ip address> <key>.

zone:
name: "example.com"
zonefile: "example.com.zone"
allow-notify: 168.192.185.33 NOKEY
request-xfr: 168.192.185.33 NOKEY
allow-notify: 168.192.199.2 NOKEY
request-xfr: 168.192.199.2 NOKEY

By default, a secondary will fallback to AXFR requests if the primary told us it does not support IXFR. You can
configure the secondary not to do AXFR fallback with:

allow-axfr-fallback: "no"

For a primary zone, list the secondary servers, by IP address or subnet. Below is an example of a primary zone with
two secondary servers:

11
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zone:
name: "example.com"
zonefile: "example.com.zone"
notify: 168.192.133.75 NOKEY
provide-xfr: 168.192.133.75 NOKEY
notify: 168.192.5.44 NOKEY
provide-xfr: 168.192.5.44 NOKEY

You also can set the outgoing interface for notifies and zone transfer requests to satisfy access control lists at the other
end:

outgoing-interface: 168.192.5.69

By default, NSD will retry a notify up to five times. You can override that value with:

notify-retry: 5

Zone transfers can be secured with TSIG keys, replace NOKEY with the name of the TSIG key to use. See Using TSIG
for details.

Since NSD is written to be run on the root name servers, the config file can to contain something like:

zone:
name: "."
zonefile: "root.zone"
provide-xfr: 0.0.0.0/0 NOKEY # allow axfr for everyone.
provide-xfr: ::0/0 NOKEY

You should only do that if you’re intending to run a root server, NSD is not suited for running a . cache. Therefore if
you choose to serve the . zone you have to make sure that the complete root zone is timely and fully updated.

To prevent misconfiguration, NSD configure has the --enable-root-server option, that is by default disabled.

In the config file, you can use patterns. A pattern can have the same configuration statements that a zone can have. And
then you can include-pattern: <name-of-pattern> in a zone (or in another pattern) to apply those settings.
This can be used to organise the settings.

12 Chapter 4. Setting up a secondary zone



CHAPTER

FIVE

REMOTE CONTROLING NSD

The nsd-control tool is also controlled from the nsd.conf config file. It uses TLS encrypted transport to 127.0.0.1,
and if you want to use it you have to setup the keys and also edit the config file. You can leave the remote-control
disabled (the secure default), or opt to turn it on:

# generate keys
nsd-control-setup

# edit nsd.conf to add this
remote-control:
control-enable: yes

By default nsd-control is limited to localhost, as well as encrypted, but some people may want to remotely
administer their nameserver. What you then do is setup nsd-control to listen to the public IP address, with
control-interface: <IP> after the control-enable statement.

Furthermore, you copy the key files /etc/nsd/nsd_server.pem /etc/nsd/nsd_control.* to a remote host on the
internet; on that host you can run nsd-controlwith -c <special config file> which references same IP address
control-interface and references the copies of the key files with server-cert-file, control-key-file and
control-cert-file config lines after the control-enable statement. The nsd-server authenticates the nsd-control
client, and also the nsd-control client authenticates the nsd-server.

13
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CHAPTER

SIX

STARTING UP THE FIRST TIME

When you are done with the configuration file, check the syntax using

nsd-checkconf <name of configfile>

The zone files are read by the daemon, which builds nsd.db with their contents. You can start the daemon with:

nsd -c <name of configfile>
or with "nsd-control start" (which execs nsd again).
or simply with "nsd", which wil use the default configuration file

To check if the daemon is running look with ps, top, or if you enabled nsd-control:

nsd-control status

To reload changed zone files after you edited them, without stopping the daemon, use this to check if files are modified:

kill -HUP `cat <name of nsd pidfile>`
or "nsd-control reload" if you have remote-control enabled

With nsd-control you can also reread the config file, in case of new zones, etc.

nsd-control reconfig

To restart the daemon:

/etc/rc.d/nsd restart # or your system(d) equivalent

To shut it down (for example on the system shutdown) do:

kill -TERM <pid of nsd>
or nsd-control stop

NSD will automatically keep track of secondary zones and update them when needed. When primary zones are updated
and reloaded notifications are sent to secondary servers.

The zone transfers are applied to nsd.db by the daemon. To write changed contents of the zone files for secondary
zones to disk in the text-based zone file format, issue nsd-control write.

NSD will send notifications to secondary zones if a primary zone is updated. NSD will check for updates at primary
servers periodically and transfer the updated zone by AXFR/IXFR and reload the new zone contents.

If you wish exert manual control use nsd-control notify, transfer and force_transfer commands. The trans-
fer command will check for new versions of the secondary zones hosted by this NSD. The notify command will send
notifications to the secondary servers configured in notify: statements.

15
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CHAPTER

SEVEN

ZONEFILE EXAMPLE

On this page we give an example of a basic zone file and it’s contents.

We recommend using the nsd-checkzone tool to verify that you have a working zone.

7.1 Creating a zone

A zone needs a SOA (Source Of Authority) record. For the exact structure we refer you to the wiki page. Note that all
records must Fully Qualified Domain Names (FQDNs) which adds a . to the domain name. In this example the FQDN
is: example.com.. This is in contrast to relative domain names, where the origin gets appended (so in the example
below, www gets expanded to www.example.com.).

Also note that @ symbol in the zone file refers to the $ORIGIN parameter. To have multi-line resource records opening
and closing brackets can be used to ignore linebreaks. Finally, if a name at the start of a record is missed, the name
from the previous entry gets used (This is why all three A records are equivalent).

$ORIGIN example.com. ; 'default' domain as FQDN for this zone
$TTL 86400 ; default time-to-live for this zone

example.com. IN SOA ns.example.com. noc.dns.icann.org. (
2020080302 ;Serial
7200 ;Refresh
3600 ;Retry
1209600 ;Expire
3600 ;Negative response caching TTL

)

; The nameserver that are authoritative for this zone.
NS example.com.

; these A records below are equivalent
example.com. A 192.0.2.1
@ A 192.0.2.1

A 192.0.2.1

@ AAAA 2001:db8::3

; A CNAME redirect from www.exmaple.com to example.com
www CNAME example.com.

mail MX 10 example.com.
(continues on next page)

17
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(continued from previous page)

1.2.0.192.in-addr.arpa". PTR example.com.

18 Chapter 7. Zonefile example



CHAPTER

EIGHT

LOGGING

NSD does not provide any DNS logging. We believe that this is a separate task and has to be done independently
from the core operation. This consciously is not part of NSD itself in order to keep NSD focused and minimise its
complexity. It is better to leave logging and tracing to separate dedicated tools.

The CAIDA dnsstat tool can easily be configured and/or modified to suit local statistics requirements without any danger
of affecting the name server itself. We have run dnsstat on the same machine as NSD, and we would recommend
using a multiprocessor if performance is an issue. Of course, dnsstat can also run on a separate machine that has
MAC layer access to the network of the server.

The nsd-control tool can output some statistics, with nsd-control stats and nsd-control stats_noreset.
In contrib/nsd_munin_ there is a Munin grapher plugin that uses it. The output of nsd-control stats is easy to
read (text only) with scripts. The output values are documented on the nsd-control man page.

Another available tool is dnstop, which displays DNS statistics on your network.

19
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CHAPTER

NINE

USING TRANSACTION SIGNATURE (TSIG)

NSD supports Transaction Signature (TSIG) for zone transfer and for notify sending and receiving, for any query to
the server.

TSIG keys are based on shared secrets. These must be configured in the config file. To keep the secret in a separate file
use include: "filename" to include that file.

An example TSIG key named sec1_key:

key:
name: "sec1_key"
algorithm: hmac-md5
secret: "6KM6qiKfwfEpamEq72HQdA=="

This key can then be used for any query to the NSD server. NSD will check if the signature is valid, and if so, return a
signed answer. Unsigned queries will be given unsigned replies.

The key can be used to restrict the access control lists, for example to only allow zone transfer with the key, by listing
the key name on the access control line.

# provides AXFR to the subnet when TSIG is used.
provide-xfr: 10.11.12.0/24 sec1_key
# allow only notifications that are signed
allow-notify: 192.168.0.0/16 sec1_key

If the TSIG key name is used in notify or request-xfr lines, the key is used to sign the request/notification messages.
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TEN

ZONE EXPIRY OF SECONDARY ZONES

NSD will keep track of the status of secondary zones, according to the timing values in the SOA record for the zone.
When the refresh time of a zone is reached, the serial number is checked and a zone transfer is started if the zone has
changed. Each primary server is tried in turn.

Master zones cannot expire so they are always served. Zones are interpreted primary zones if they have no
request-xfr: statements in the config file.

After the expire timeout (from the SOA record at the zone apex) is reached, the zone becomes expired. NSD will
return SERVFAIL for expired zones, and will attempt to perform a zone transfer from any of the primaries. After a zone
transfer succeeds, or if the primary indicates that the SOA serial number is still the same, the zone will be OK again.

In contrast with e.g. BIND, the inception time for a secondary zone is stored on disk (in xfrdfile: "xfrd.state"),
together with timeouts. If a secondary zone acquisition time is recent enough, this means that NSD can start serving a
zone immediately on loading, without querying the primary server.

If your secondary zone has expired and no primaries can be reached, but you still want NSD to serve the zone, then
you can delete the xfrd.state file, but leave the zone file for the zone intact. Make sure to stop NSD before you
delete the file, as NSD writes it on exit. Upon loading NSD will treat the zone file that you as operator have provided
as recent and will serve the zone. Even though NSD will start to serve the zone immediately, the zone will expire after
the timeout is reached again. NSD will also attempt to confirm that you have provided the correct data by polling the
primaries. So when the primary servers come back up, it will transfer the updated zone within <retry timeout from
SOA> seconds.

In general it is possible to provide zone files for both primary and secondary zones manually (say from email or rsync).
Reload with SIGHUP or nsd-control reload to read the new zone file contents into the name database. When this
is done the new zone will be served. For primary zones, NSD will issue notifications to all configured notify: targets.
For secondary zones the above happens; NSD attempts to validate the zone from the primary (checking its SOA serial
number).
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INTERFACES

NSD will by default bind itself to the system default interface and service IPv4 and if available also IPv6. It is possible
to service only IPv4 or IPv6 using the -4, -6 command line options, or the ip4-only and ip6-only config file
options.

The command line option -a and config file option ip-address can be given to bind to specific interfaces. Multiple
interfaces can be specified, which is useful for two reasons:

• The specific interface bound will result in the OS bypassing routing tables for the interface selection. This results
in a small performance gain. It is not the performance gain that is the problem: sometimes the routing tables can
give the wrong answer, see the next point.

• The answer will be routed via the interface the query came from. This makes sure that the return address on the
DNS replies is the same as the query was sent to. Many resolvers require the source address of the replies to be
correct. The ip-address: option is easier than configuring the OS routing table to return the DNS replies via
the correct interface.

The above means that even for systems with multiple interfaces where you intend to provide DNS service to all inter-
faces, it is prudent to specify all the interfaces as ip-address config file options.

With the config file option ip-transparent you can allow NSD to bind to non-local addresses.
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TWELVE

TUNING

In version 4.3.0 of NSD, additional functionality was added to increase performance even more. Most notably, this
includes processor affinity.

NSD is performant by design because it matters when operators serve hundreds of thousands or even millions of queries
per second. We strive to make the right choices by default, like enabling the use of libevent at the configure stage to
ensure the most efficient event mechanism is used on a given platform. e.g. epoll on Linux and kqueue on FreeBSD.
Switches are available for operators who know the implementation on their system behaves correctly, like enabling the
use of recvmmsg at the configure stage (--enable-recvmmsg) to read multiple messages from a socket in one system
call.

By default NSD forks (only) one server. Modern computer systems however, may have more than one processor, and
usually have more than one core per processor. The easiest way to scale up performance is to simply fork more servers
by configuring server-count: to match the number of cores available in the system so that more queries can be answered
simultaneously. If the operating system supports it, ensure reuseport: is set to yes to distribute incoming packets
evenly across server processes to balance the load.

A couple of other options that the operator may want to consider:

1. Memory usage can be lowered (around 50%) by using zone files and disable the on-disk database by setting
database: "".

2. TCP capacity can be significantly increased by setting tcp-count: 1000 and tcp-timeout: 3. Set
tcp-reject-overflow: yes to prevent the kernel connection queue from growing.

12.1 Processor Affinity

The aforementioned settings provide an easy way to increase performance without the need for in-depth knowledge of
the hardware. For operators that require even more throughput cpu-affinity is available.

The operating system’s scheduling-algorithm determines which core a given task is allocated to. Processors build
up state — e.g. by keeping frequently accessed data in cache memory — for the task that it is currently executing.
Whenever a task switches cores, performance is degraded because the core it switched to has yet to build up said state.
While this scheduling-algorithm works just fine for general-purpose computing, operators may want to designate a set
of cores for best performance. The cpu-affinity family of configuration options was added to NSD specifically for
that purpose.

Processor affinity is currently supported on Linux and FreeBSD. Other operating systems may be supported in the
future, but not all operating systems that can run NSD support CPU pinning. To fully benefit from this feature, one
must first determine which cores should be allocated to NSD. This requires some knowledge of the underlying hardware,
but generally speaking every process should run on a dedicated core and the use of Hyper-Threading cores should be
avoided to prevent resource contention. List every core designated to NSD in cpu-affinity and bind each server
process to a specific core using server-<N>-cpu-affinity and xfrd-cpu-affinity to improve L1/L2 cache hit
rates and reduce pipeline stalls/flushes.
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server:
server-count: 2
cpu-affinity: 0 1 2
server-1-cpu-affinity: 0
server-2-cpu-affinity: 1
xfrd-cpu-affinity: 2

12.2 Partition Sockets

ip-address: options in the server: clause can be configured per server or set of servers. Sockets configured for
a specific server are closed by other servers on startup. This improves performance if a large number of sockets are
scanned using select/poll and avoids waking up multiple servers when a packet comes in, known as the thundering
herd problem. Though both problems are solved using a modern kernel and a modern I/O event mechanism, there is
one other reason to partition sockets, explained below.

server:
ip-address: 192.0.2.1 servers=1

12.3 Bind to Device

ip-address: options in the server: clause can now also be configured to bind directly to the network interface device
on Linux (bindtodevice=yes) and to use a specific routing table on FreeBSD (setfib=<N>). These were added to
ensure UDP responses go out over the same interface the query came in on if there are multiple interfaces configured
on the same subnet, but there may be some performance benefits as well as the kernel does not have to go through the
network interface selection process.

server:
ip-address: 192.0.2.1 bindtodevice=yes setfib=<N>

Note: FreeBSD does not create extra routing tables on demand. Consult the FreeBSD Handbook, forums, etc. for
information on how to configure multiple routing tables.

12.4 Combining Options

Field tests have shown best performance is achieved by combining the aforementioned options so that each network
interface is essentially bound to a specific core. To do so, use one IP address per server process, pin that process to a
designated core and bind directly to the network interface device.

server:
server-count: 2
cpu-affinity: 0 1 2
server-1-cpu-affinity: 0
server-2-cpu-affinity: 1
xfrd-cpu-affinity: 2
ip-address: 192.0.2.1 servers=1 bindtodevice=yes setfib=1
ip-address: 192.0.2.2 servers=2 bindtodevice=yes setfib=2
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The above snippet serves as an example on how to use the configuration options. Which cores, IP addresses and routing
tables are best used depends entirely on the hardware and network layout. Be sure to test extensively before using the
options.
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THIRTEEN

NSD(8)

13.1 Synopsis

nsd [-4] [-6] [-a ip-address[@port]] [-c configfile] [-d] [-f database] [-h ] [-i identity] [-I nsid]
[-l logfile] [-N server-count] [-n noncurrent-tcp-count] [-P pidfile] [-p port] [-s seconds] [-t
chrootdir] [-u username] [-V level] [-v]

13.2 Description

NSD is a complete implementation of an authoritative DNS nameserver. Upon startup, NSD will read the database
specified with -f database argument and put itself into background and answers queries on port 53 or a different
port specified with -p port option. The database is created if it does not exist. By default, NSD will bind to all local
interfaces available. Use the -a ip-address[@port] option to specify a single particular interface address to be
bound. If this option is given more than once, NSD will bind its UDP and TCP sockets to all the specified ip-addresses
separately. If IPv6 is enabled when NSD is compiled an IPv6 address can also be specified.

13.3 Options

All the options can be specified in the configfile (-c argument), except for the -v and -h options. If options are specified
on the commandline, the options on the commandline take precedence over the options in the configfile.

Normally NSD should be started with the nsd-control(8) start command invoked from a /etc/rc.d/nsd.sh
script or similar at the operating system startup.

-4
Only listen to IPv4 connections.

-6
Only listen to IPv6 connections.

-a ip-address[@port]
Listen to the specified ip-address. The ip-address must be specified in numeric format (using the standard IPv4
or IPv6 notation). Optionally, a port number can be given. This flag can be specified multiple times to listen to
multiple IP addresses. If this flag is not specified, NSD listens to the wildcard interface.

-c configfile
Read specified configfile instead of the default /etc/nsd/nsd.conf. For format description see nsd.conf(5).

-d
Do not fork, stay in the foreground.
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-f database
Use the specified database instead of the default of /var/db/nsd/nsd.db. If a zonesdir: is specified in the
config file this path can be relative to that directory.

-h
Print help information and exit.

-i identity
Return the specified identity when asked for CH TXT ID.SERVER (This option is used to determine which server
is answering the queries when they are anycast). The default is the name returned by gethostname(3).

-I nsid
Add the specified nsid to the EDNS section of the answer when queried with an NSID EDNS enabled packet.
As a sequence of hex characters or with ascii_ prefix and then an ascii string.

-l logfile
Log messages to the specified logfile. The default is to log to stderr and syslog. If a zonesdir: is specified in
the config file this path can be relative to that directory.

-N count
Start count NSD servers. The default is 1. Starting more than a single server is only useful on machines with
multiple CPUs and/or network adapters.

-n number
The maximum number of concurrent TCP connection that can be handled by each server. The default is 100.

-P pidfile
Use the specified pidfile instead of the platform specific default, which is mostly /var/run/nsd.pid. If a
zonesdir: is specified in the config file, this path can be relative to that directory.

-p port
Answer the queries on the specified port. Normally this is port 53.

-s seconds
Produce statistics dump every seconds seconds. This is equal to sending SIGUSR1 to the daemon periodically.

-t chroot
Specifies a directory to chroot to upon startup. This option requires you to ensure that appropriate syslogd(8)
socket (e.g. chrootdir /dev/log) is available, otherwise NSD won’t produce any log output.

-u username
Drop user and group privileges to those of username after binding the socket. The username must be one of:
username, id, or id.gid. For example: nsd, 80, or 80.80.

-V level
This value specifies the verbosity level for (non-debug) logging. Default is 0.

-v
Print the version number of NSD to standard error and exit.

NSD reacts to the following signals:

SIGTERM Stop answering queries, shutdown, and exit normally.

SIGHUP Reload. Scans zone files and if changed (mtime) reads them in. Also reopens the logfile (assists logrotation).

SIGUSR1 Dump BIND8-style statistics into the log. Ignored otherwise.
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13.4 Files

/var/db/nsd/nsd.db default NSD database

/var/run/nsd.pid the process id of the name server.

/etc/nsd/nsd.conf default NSD configuration file

13.5 Diagnostics

NSD will log all the problems via the standard syslog(8) daemon facility, unless the -d option is specified.

13.6 See Also

nsd.conf(5), nsd-checkconf(8), nsd-control(8)
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NSD-CHECKCONF(8)

14.1 Synopsis

nsd-checkconf -v -f -h [-o option] [-z zonename] [-p pattern] [-s keyname] [-t tlsauthname] configfile

14.2 Description

nsd-checkconf reads a configuration file. It prints parse errors to standard error, and performs additional checks on
the contents. The configfile format is described in nsd.conf(5).

The utility of this program is to check a config file for errors before using it in nsd(8). This program can also be used
for shell scripts to access the nsd config file, using the -o and -z options.

14.3 Options

-v
After reading print the options to standard output in configfile format. Without this option, only success or parse
errors are reported.

-f
Print full pathname when used with files, like with -o pidfile. This includes the chroot in the way it is applied to
the pidfile.

-h
Print usage help information and exit.

-o option
Return only this option from the config file. This option can be used in conjunction with the -z and the -p option,
or without them to query the server: section. The special value zones prints out a list of configured zones. The
special value patterns prints out a list of configured patterns.

This option can be used to parse the config file from the shell. If the -z option is given, but the -o option is not
given, nothing is printed.

-s keyname
Prints the key secret (base64 blob) configured for this key in the config file. Used to help shell scripts parse the
config file.

-t tls-auth
Prints the authentication domain name configured for this tls-auth clause in the config file. Used to help shell
scripts parse the config file.
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-p pattern
Return the option specified with -o for the given pattern name.

-z zonename
Return the option specified with -o for zone zonename.

If this option is not given, the server section of the config file is used.

The -o, -s and -z option print configfile options to standard output.

14.4 Files

/etc/nsd/nsd.conf default NSD configuration file

14.5 See Also

nsd(8), nsd.conf(5), nsd.control(8)
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NSD-CHECKZONE(8)

15.1 Synopsis

nsd-checkzone [-h ] zonename zonefile

15.2 Description

nsd-checkzone reads a DNS zone file and checks it for errors. It prints errors to stderr. On failure it exits with nonzero
exit status.

This is used to check files before feeding them to the nsd(8) daemon.

15.3 Options

-h
Print usage help information and exit.

zonename The name of the zone to check, eg. “example.com”.

zonefile The file to read, eg. zones/example.com.zone.signed.

15.4 See Also

nsd(8), nsd-checkconf(8)
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NSD.CONF(5)

16.1 Synopsis

nsd.conf

16.2 Description

Nsd.conf is used to configure nsd(8). The file format has attributes and values. Some attributes have attributes inside
them. The notation is: attribute: value.

Comments start with # and last to the end of line. Empty lines are ig- nored as is whitespace at the beginning of a line.
Quotes can be used, for names with spaces, eg. “file name.zone”.

Nsd.conf specifies options for the nsd server, zone files, primaries and secondaries.

16.3 Example

An example of a short nsd.conf file is below.

# Example.com nsd.conf file
# This is a comment.

server:
server-count: 1 # use this number of cpu cores
database: "" # or use "/var/db/nsd/nsd.db"
zonelistfile: "/var/db/nsd/zone.list"
username: nsd
logfile: "/var/log/nsd.log"
pidfile: "/var/run/nsd.pid"
xfrdfile: "/var/db/nsd/xfrd.state"

zone:
name: example.com
zonefile: /etc/nsd/example.com.zone

zone:
# this server is master, 192.0.2.1 is the secondary.
name: masterzone.com

(continues on next page)
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(continued from previous page)

zonefile: /etc/nsd/masterzone.com.zone
notify: 192.0.2.1 NOKEY
provide-xfr: 192.0.2.1 NOKEY

zone:
# this server is secondary, 192.0.2.2 is master.
name: secondzone.com
zonefile: /etc/nsd/secondzone.com.zone
allow-notify: 192.0.2.2 NOKEY
request-xfr: 192.0.2.2 NOKEY

Then, use kill -HUP to reload changes from master zone files. And use kill -TERM to stop the server.

16.4 File Format

There must be whitespace between keywords. Attribute keywords end with a colon ':'. An attribute is followed by
its containing attributes, or a value.

At the top level only server:, key:, pattern:, zone:, tls-auth:, and remote-control: are allowed. These are followed
by their attributes or a new top-level keyword. The zone: attribute is followed by zone options. The server: attribute is
followed by global options for the NSD server. A key: attribute is used to define keys for authentication. The pattern:
attribute is followed by the zone options for zones that use the pattern. A tls-auth: attribute is used to define credentials
for authenticating an outgoing TLS connection used for XFR-over-TLS.

Files can be included using the include: directive. It can appear anywhere, and takes a single filename as an argument.
Processing continues as if the text from the included file was copied into the config file at that point. If a chroot is
used an absolute filename is needed (with the chroot prepended), so that the include can be parsed before and after
application of the chroot (and the knowledge of what that chroot is). You can use '*' to include a wildcard match of
files, e.g. foo/nsd.d/*.conf. Also '?', '{}', '[]', and '~' work, see glob(7). If no files match the pattern, this is
not an error.

16.4.1 Server Options

The global options (if not overridden from the NSD commandline) are taken from the server: clause. There may only
be one server: clause.

ip-address: <ip4 or ip6>[@port] [servers] [bindtodevice] [setfib] NSD will bind to the listed ip-address. Can be
given multiple times to bind multiple ip-addresses. Optionally, a port number can be given. If none are given
NSD listens to the wildcard interface. Same as commandline option -a.

To limit which NSD server(s) listen on the given interface, specify one or more servers separated by whitespace
after <ip>[@port]. Ranges can be used as a shorthand to specify multiple consecutive servers. By default every
server will listen.

If an interface name is used instead of ip4 or ip6, the list of IP addresses associated with that interface is picked
up and used at server start.

For servers with multiple IP addresses that can be used to send traffic to the internet, list them one by one, or
the source address of replies could be wrong. This is because if the udp socket associates a source address of
0.0.0.0 then the kernel picks an ip-address with which to send to the internet, and it picks the wrong one.
Typically needed for anycast instances. Use ip-transparent to be able to list addresses that turn on later (typical
for certain load-balancing).
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interface: <ip4 or ip6>[@port] [servers] [bindtodevice] [setfib] Same as ip-address (for ease of compatibility with
unbound.conf).

ip-transparent: <yes or no> Allows NSD to bind to non local addresses. This is useful to have NSD listen to IP
addresses that are not (yet) added to the network interface, so that it can answer immediately when the address
is added. Default is no.

ip-freebind: <yes or no> Set the IP_FREEBIND option to bind to nonlocal addresses and interfaces that are down.
Similar to ip-transparent. Default is no.

reuseport: <yes or no> Use the SO_REUSEPORT socket option, and create file descriptors for every server in the
server-count. This improves performance of the network stack. Only really useful if you also configure a server-
count higher than 1 (such as, equal to the number of cpus). The default is no. It works on Linux, but does not
work on FreeBSD, and likely does not work on other systems.

send-buffer-size: <number> Set the send buffer size for query-servicing sockets. Set to 0 to use the default settings.

receive-buffer-size: <number> Set the receive buffer size for query-servicing sockets. Set to 0 to use the default
settings.

debug-mode: <yes or no> Turns on debugging mode for nsd, does not fork a daemon process. Default is no. Same
as commandline option -d . If set to yes it does not fork and stays in the foreground, which can be helpful for
commandline debugging, but is also used by certain server supervisor processes to ascertain that the server is
running.

do-ip4: <yes or no> If yes, NSD listens to IPv4 connections. Default yes.

do-ip6: <yes or no> If yes, NSD listens to IPv6 connections. Default yes.

database: <filename> By default ‘/var/db/nsd/nsd.db’ is used. The specified file is used to store the compiled zone
information. Same as commandline option -f . If set to "" then no database is used. This uses less memory but
zone updates are not (immediately) spooled to disk.

zonelistfile: <filename> By default /var/db/nsd/zone.list is used. The specified file is used to store the dynam-
ically added list of zones. The list is written to by NSD to add and delete zones. It is a text file with a zone-name
and pattern-name on each line. This file is used for the nsd-control addzone and delzone commands.

identity: <string> Returns the specified identity when asked for CH TXT ID.SERVER. Default is the name as returned
by gethostname(3). Same as commandline option -i. See hide-identity to set the server to not respond to such
queries.

version: <string> Returns the specified version string when asked for CH TXT version.server, and version.
bind queries. Default is the compiled package version. See hide-version to set the server to not respond to such
queries.

nsid: <string> Add the specified nsid to the EDNS section of the answer when queried with an NSID EDNS enabled
packet. As a sequence of hex characters or with ascii_ prefix and then an ascii string. Same as commandline
option -I.

logfile: <filename> Log messages to the logfile. The default is to log to stderr and syslog (with facility
LOG_DAEMON). Same as commandline option -l.

log-only-syslog: <yes or no> Log messages only to syslog. Useful with systemd so that print to stderr does not cause
duplicate log strings in journald. Before syslog has been opened, the server uses stderr. Stderr is also used if
syslog is not available. Default is no.

server-count: <number> Start this many NSD servers. Default is 1. Same as commandline option -N.

cpu-affinity: <number> <number> . . . Overall CPU affinity for NSD server(s). Default is no affinity.

server-N-cpu-affinity: <number> Bind NSD server specified by N to a specific core. Default is to have affinity set
to every core specified in cpu-affinity. This setting only takes effect if cpu-affinity is enabled.
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xfrd-cpu-affinity: <number> Bind xfrd to a specific core. Default is to have affinity set to every core specified in
cpu-affinity. This setting only takes effect if cpu-affinity is enabled.

tcp-count: <number> The maximum number of concurrent, active TCP connections by each server. Default is 100.
Same as commandline option -n.

tcp-reject-overflow: <yes or no> If set to yes, TCP connections made beyond the maximum set by tcp-count will be
dropped immediately (accepted and closed). Default is no.

tcp-query-count: <number> The maximum number of queries served on a single TCP connection. Default is 0,
meaning there is no maximum.

tcp-timeout: <number> Overrides the default TCP timeout. This also affects zone transfers over TCP. The default is
120 seconds.

tcp-mss: <number> Maximum segment size (MSS) of TCP socket on which the server responds to queries. Value
lower than common MSS on Ethernet (1220 for example) will address path MTU problem. Note that not all
platform supports socket option to set MSS (TCP_MAXSEG). Default is system default MSS determined by
interface MTU and negotiation between server and client.

outgoing-tcp-mss: <number> Maximum segment size (MSS) of TCP socket for outgoing XFR request to other name-
severs. Value lower than common MSS on Ethernet (1220 for example) will address path MTU problem. Note
that not all platform supports socket option to set MSS (TCP_MAXSEG). Default is system default MSS deter-
mined by interface MTU and negotiation between NSD and other servers.

ipv4-edns-size: <number> Preferred EDNS buffer size for IPv4. Default 1232.

ipv6-edns-size: <number> Preferred EDNS buffer size for IPv6. Default 1232.

pidfile: <filename> Use the pid file instead of the platform specific default, usually /var/run/nsd.pid. Same as
commandline option -P. With "" there is no pidfile, for some startup management setups, where a pidfile is not
useful to have.

port: <number> Answer queries on the specified port. Default is 53. Same as commandline option -p.

statistics: <number> If not present no statistics are dumped. Statistics are produced every number seconds. Same as
commandline option -s.

chroot: <directory> NSD will chroot on startup to the specified directory. Note that if elsewhere in the configuration
you specify an absolute pathname to a file inside the chroot, you have to prepend the chroot path. That way, you
can switch the chroot option on and off without having to modify anything else in the configuration. Set the value
to "" (the empty string) to disable the chroot. By default "" is used. Same as commandline option -t.

username: <username> After binding the socket, drop user privileges and assume the username. Can be username,
id or id.gid. Same as commandline option -u.

zonesdir: <directory> Change the working directory to the specified directory before accessing zone files. Also, NSD
will access database, zonelist-file, logfile, pidfile, xfrdfile, xfrdir, server-key-file, server-cert-file, control-
key-file and control-cert-file relative to this directory. Set the value to "" (the empty string) to disable the
change of working directory. By default "/etc/nsd" is used.

difffile: <filename> Ignored, for compatibility with NSD3 config files.

xfrdfile: <filename> The soa timeout and zone transfer daemon in NSD will save its state to this file. State is read
back after a restart. The state file can be deleted without too much harm, but timestamps of zones will be gone.
If it is configured as "", the state file is not used, all slave zones are checked for updates upon startup. For more
details see the section on zone expiry behavior of NSD. Default is /var/db/nsd/xfrd.state.

xfrdir: <directory> The zone transfers are stored here before they are processed. A directory is created here that is
removed when NSD exits. Default is /tmp.
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xfrd-reload-timeout: <number> If this value is -1, xfrd will not trigger a reload after a zone transfer. If positive xfrd
will trigger a reload after a zone transfer, then it will wait for the number of seconds before it will trigger a new
reload. Setting this value throttles the reloads to once per the number of seconds. The default is 1 second.

verbosity: <level> This value specifies the verbosity level for (non-debug) logging. Default is 0. 1 gives more in-
formation about incoming notifies and zone transfers. 2 lists soft warnings that are encountered. 3 prints more
information.

Verbosity 0 will print warnings and errors, and other events that are important to keep NSD running.

Verbosity 1 prints additionally messages of interest. Successful notifies, successful incoming zone transfer (the
zone is updated), failed incoming zone transfers or the inability to process zone updates.

Verbosity 2 prints additionally soft errors, like connection resets over TCP. And notify refusal, and axfr request
refusals.

hide-version: <yes or no> Prevent NSD from replying with the version string on CHAOS class queries. Default is
no.

hide-identity: <yes or no> Prevent NSD from replying with the identity string on CHAOS class queries. Default is
no.

drop-updates: <yes or no> If set to yes, drop received packets with the UPDATE opcode. Default is no.

use-systemd: <yes or no> This option is deprecated and ignored. If compiled with libsystemd, NSD signals readiness
to systemd and use of the option is not necessary.

log-time-ascii: <yes or no> Log time in ascii, if “no” then in seconds epoch. Default is yes. This chooses the format
when logging to file. The print- out via syslog has a timestamp formatted by syslog.

round-robin: <yes or no> Enable round robin rotation of records in the answer. This changes the order of records in
the answer and this may balance load across them. The default is no.

minimal-responses: <yes or no> Enable minimal responses for smaller answers. This makes pack- ets smaller. Extra
data is only added for referrals, when it is really necessary. This is different from the –enable-minimal-responses
configure time option, that reduces packets, but ex- actly to the fragmentation length, the nsd.conf option reduces
packets as small as possible. The default is no.

confine-to-zone: <yes or no> If set to yes, additional information will not be added to the response if the apex zone of
the additional information does not match the apex zone of the initial query (E.G. CNAME resolution). Default
is no.

refuse-any: <yes or no> Refuse queries of type ANY. This is useful to stop query floods trying to get large responses.
Note that rrl ratelimiting also has type ANY as a ratelimiting type. It sends truncation in response to UDP type
ANY queries, and it allows TCP type ANY queries like normal. The default is no.

zonefiles-check: <yes or no> Make NSD check the mtime of zone files on start and sighup. If you disable it it starts
faster (less disk activity in case of a lot of zones). The default is yes. The nsd-control reload command reloads
zone files regardless of this option.

zonefiles-write: <seconds> Write changed secondary zones to their zonefile every N seconds. If the zone (pattern)
configuration has "" zonefile, it is not written. Zones that have received zone transfer updates are written to their
zonefile. Default is 0 (disabled) when there is a database, and 3600 (1 hour) when database is "". The database
also commits zone transfer contents. You can configure it away from the default by putting the config statement
for zone-files-write: after the database: statement in the config file.

rrl-size: <numbuckets> This option gives the size of the hashtable. Default 1000000. More buckets use more mem-
ory, and reduce the chance of hash collisions.

rrl-ratelimit: <qps> The max qps allowed (from one query source). Default is on (with a suggested 200 qps). If set
to 0 then it is disabled (unlimited rate), also set the whitelist-ratelimit to 0 to disable rate-limit processing. If
you set verbosity to 2 the blocked and unblocked subnets are logged. Blocked queries are blocked and some

16.4. File Format 43



NSD User Manual, Release 4.3.9

receive TCP fallback replies. Once the rate limit is reached, NSD begins dropping responses. However, one in
every “rrl-slip” number of responses is allowed, with the TC bit set. If slip is set to 2, the outgoing response rate
will be halved. If it’s set to 3, the outgoing response rate will be one-third, and so on. If you set rrl-slip to 10,
traffic is reduced to 1/10th. Ratelimit options rrl-ratelimit, rrl-size and rrl-whitelist-ratelimit are updated when
nsd-control reconfig is done (also the zone-specific ratelimit options are updated).

rrl-slip: <numpackets> This option controls the number of packets discarded before we send back a SLIP response
(a response with “truncated” bit set to one). 0 disables the sending of SLIP packets, 1 means every query will
get a SLIP response. Default is 2, cuts traffic in half and legit users have a fair chance to get a +TC response.

rrl-ipv4-prefix-length: <subnet> IPv4 prefix length. Addresses are grouped by netblock. Default 24.

rrl-ipv6-prefix-length: <subnet> IPv6 prefix length. Addresses are grouped by netblock. Default 64.

rrl-whitelist-ratelimit: <qps> The max qps for query sorts for a source, which have been whitelisted. Default on
(with a suggested 2000 qps). With the rrl-whitelist option you can set specific queries to receive this qps limit
instead of the normal limit. With the value 0 the rate is unlimited.

answer-cookie: <yes or no> Enable to answer to requests containig DNS Cookies as specified in RFC 7873. Default
is no.

cookie-secret: <128 bit hex string> Servers in an anycast deployment need to be able to verify each other’s DNS
Server Cookies. For this they need to share the secret used to construct and verify the DNS Cookies. Default is
a 128 bits random secret generated at startup time. This option is ignored if a cookie-secret-file is present. In
that case the secrets from that file are used in DNS Cookie calculations.

cookie-secret-file: <filename> File from which the secrets are read used in DNS Cookie calculations. When this file
exists, the secrets in this file are used and the secret specified by the cookie-secret option is ignored. Default is
/etc/nsd/nsd_cookiesecrets.txt

The content of this file must be manipulated with the add_cookie_secret, drop_cookie_secret and acti-
vate_cookie_secret commands to the nsd-control(8) tool. Please see that manpage how to perform a safe
cookie secret rollover.

tls-service-key: <filename> If enabled, the server provides TLS service on TCP sockets with the TLS service port
number. The port number (853) is configured with tls-port. To turn it on, create an interface: option line in
config with @port appended to the IP-address. This creates the extra socket on which the DNS over TLS service
is provided.

The file is the private key for the TLS session. The public certificate is in the tls-service-pem file. Default is
"", turned off. Requires a restart (a reload is not enough) if changed, because the private key is read while root
permissions are held and before chroot (if any).

tls-service-pem: <filename> The public key certificate pem file for the tls service. Default is "", turned off.

tls-service-ocsp: <filename> The ocsp pem file for the tls service, for OCSP stapling. Default is "", turned off. An
external process prepares and updates the OCSP stapling data. Like this,

openssl ocsp -no_nonce \
-respout /path/to/ocsp.pem \
-CAfile /path/to/ca_and_any_intermediate.pem \
-issuer /path/to/direct_issuer.pem \
-cert /path/to/cert.pem \
-url "$( openssl x509 -noout -text -in /path/to/cert.pem |
grep 'OCSP - URI:' | cut -d: -f2,3 )"

tls-port: <number> The port number on which to provide TCP TLS service, default is 853, only interfaces configured
with that port number as @number get DNS over TLS service.
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tls-cert-bundle: <filename> If null or "", the default verify locations are used. Set it to the certificate bundle file,
for example "/etc/pki/tls/certs/ca-bundle.crt". These certificates are used for authenticating Transfer
over TLS (XoT) connections.

16.4.2 Remote Control

The remote-control: clause is used to set options for using the nsd-control(8) tool to give commands to the running
NSD server. It is disabled by default, and listens for localhost by default. It uses TLS over TCP where the server and
client authenticate to each other with self-signed certificates. The self-signed certificates can be gener- ated with the
nsd-control-setup tool. The key files are read by NSD before the chroot and before dropping user permissions, so they
can be outside the chroot and readable by the superuser only.

control-enable: <yes or no> Enable remote control, default is no.

control-interface: <ip4 or ip6 | interface name | absolute path> NSD will bind to the listed addresses to service
control requests (on TCP). Can be given multiple times to bind multiple ip-addresses. Use 0.0.0.0 and ::0 to
service the wildcard interface. If none are given NSD listens to the localhost 127.0.0.1 and ::1 interfaces for
control, if control is enabled with control-enable.

If an interface name is used instead of ip4 or ip6, the list of IP addresses associated with that interface is picked
up and used at server start.

With an absolute path, a unix local named pipe is used for con- trol. The file is created with user and group that is
config- ured and access bits are set to allow members of the group ac- cess. Further access can be controlled by
setting permissions on the directory containing the control socket file. The key and cert files are not used when
control is via the named pipe, because access control is via file and directory permission.

control-port: <number> The port number for remote control service. 8952 by default.

server-key-file: <filename> Path to the server private key, by default /etc/nsd/nsd_server.key. This file is gen-
erated by the nsd-control-setup utility. This file is used by the nsd server, but not by nsd-control.

server-cert-file: <filename> Path to the server self signed certificate, by default /etc/nsd/nsd_server.pem. This
file is generated by the nsd-control-setup utility. This file is used by the nsd server, and also by nsd-control.

control-key-file: <filename> Path to the control client private key, by default /etc/nsd/nsd_control.key. This
file is generated by the nsd-control-setup utility. This file is used by nsd-control.

control-cert-file: <filename> Path to the control client certificate, by default /etc/nsd/nsd_control.pem. This
certificate has to be signed with the server certificate. This file is generated by the nsd-control-setup utility. This
file is used by nsd-control.

16.4.3 Pattern Options

The pattern: clause is used to denote a set of options to apply to some zones. The same zone options as for a zone are
allowed.

name: <string> The name of the pattern. This is a (case sensitive) string. The pattern names that start with “_im-
plicit_” are used internally for zones that have no pattern (they are defined in nsd.conf directly).

include-pattern: <pattern-name> The options from the given pattern are included at this point in this pattern. The
referenced pattern must be defined above this one.

<zone option>: <value> The zone options such as zonefile, allow-query, allow-notify, request-xfr, allow-axfr-
fallback, notify, notify-retry, provide-xfr, zonestats, and outgoing-interface can be given. They are applied
to the patterns and zones that include this pattern.

16.4. File Format 45



NSD User Manual, Release 4.3.9

16.4.4 Zone Options

For every zone the options need to be specified in one zone: clause. The access control list elements can be given
multiple times to add multiple servers. These elements need to be added explicitly.

For zones that are configured in the nsd.conf config file their settings are hardcoded (in an implicit pattern for themselves
only) and they cannot be deleted via delzone, but remove them from the config file and repattern.

name: <string> The name of the zone. This is the domain name of the apex of the zone. May end with a '.' (in
FQDN notation). For example “example.com”, “sub.example.net.”. This attribute must be present in each zone.

zonefile: <filename> The file containing the zone information. If this attribute is present it is used to read and write
the zone contents. If the attribute is absent it prevents writing out of the zone.

The string is processed so that one string can be used (in a pattern) for a lot of different zones. If the label or
character does not exist the percent-character is replaced with a period for output (i.e. for the third character in
a two letter domain name).

%s is replaced with the zone name.

%1 is replaced with the first character of the zone name.

%2 is replaced with the second character of the zone name.

%3 is replaced with the third character of the zone name.

%z is replaced with the toplevel domain name of the zone.

%y is replaced with the next label under the toplevel domain.

%x is replaced with the next-next label under the toplevel domain.

allow-query: <ip-spec> <key-name | NOKEY | BLOCKED> Access control list. When at least one allow-query
option is specified, then the in the allow-query options specified addresses are are allowed to query the server
for the zone. Queries from unlisted or specifically BLOCKED addresses are discarded. If NOKEY is given no
TSIG signature is required. BLOCKED supersedes other entries, other entries are scanned for a match in the
order of the statements. Without allow-query options, queries are allowed from any IP address without TSIG
key (which is the default).

The ip-spec is either a plain IP address (IPv4 or IPv6), or can be a subnet of the form 1.2.3.4/24, or masked
like 1.2.3.4&255.255.255.0 or a range of the form 1.2.3.4-1.2.3.25. Note the ip-spec ranges do not use
spaces around the /, &, @ and - symbols.

allow-notify: <ip-spec> <key-name | NOKEY | BLOCKED> Access control list. The listed (primary) address is
allowed to send notifies to this (secondary) server. Notifies from unlisted or specifically BLOCKED addresses
are discarded. If NOKEY is given no TSIG signature is required. BLOCKED supersedes other entries, other
entries are scanned for a match in the order of the statements.

The ip-spec is either a plain IP address (IPv4 or IPv6), or can be a subnet of the form 1.2.3.4/24, or masked
like 1.2.3.4&255.255.255.0 or a range of the form 1.2.3.4-1.2.3.25. A port number can be added using
a suffix of @number, for example 1.2.3.4@5300 or 1.2.3.4/24@5300 for port 5300. Note the ip-spec ranges
do not use spaces around the /, &, @ and - symbols.

request-xfr: [AXFR|UDP] <ip-address> <key-name | NOKEY> [tls-auth-name] Access control list. The listed
address (the master) is queried for AXFR/IXFR on update. A port number can be added using a suffix of @num-
ber, for example 1.2.3.4@5300. The specified key is used during AXFR/IXFR. If tls-auth-name is included,
the specified tls-auth clause will be used to perform authenticated XFR-over-TLS.

If the AXFR option is given, the server will not be contacted with IXFR queries but only AXFR requests will be
made to the server. This allows an NSD secondary to have a master server that runs NSD. If the AXFR option is
left out then both IXFR and AXFR requests are made to the master server.
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If the UDP option is given, the secondary will use UDP to trans- mit the IXFR requests. You should deploy TSIG
when allowing UDP transport, to authenticate notifies and zone transfers. Otherwise, NSD is more vulnerable
for Kaminsky-style attacks. If the UDP option is left out then IXFR will be transmitted using TCP.

If a tls-auth-name is given then TLS (by default on port 853) will be used for all zone transfers for the zone. If
authentication of the master based on the specified tls-auth authentication information fails, the XFR request will
not be sent. Support for TLS 1.3 is required for XFR-over-TLS.

allow-axfr-fallback: <yes or no> This option should be accompanied by request-xfr. It (dis)allows NSD (as sec-
ondary) to fallback to AXFR if the primary name server does not support IXFR. Default is yes.

size-limit-xfr: <number> This option should be accompanied by request-xfr. It specifies XFR temporary file size
limit. It can be used to stop very large zone retrieval, that could otherwise use up a lot of memory and disk space.
If this option is 0, unlimited. Default value is 0.

notify: <ip-address> <key-name | NOKEY> Access control list. The listed address (a secondary) is notified of up-
dates to this zone. A port number can be added using a suffix of @number, for example 1.2.3.4@5300. The
specified key is used to sign the notify. Only on secondary configurations will NSD be able to detect zone updates
(as it gets notified itself, or refreshes after a time).

notify-retry: <number> This option should be accompanied by notify. It sets the number of retries when sending
notifies.

provide-xfr: <ip-spec> <key-name | NOKEY | BLOCKED> Access control list. The listed address (a secondary)
is allowed to request AXFR from this server. Zone data will be provided to the address. The specified key is
used during AXFR. For unlisted or BLOCKED addresses no data is provided, requests are discarded. BLOCKED
supersedes other entries, other entries are scanned for a match in the order of the statements. NSD provides AXFR
for its secondaries, but IXFR is not implemented (IXFR is implemented for request-xfr, but not for provide-xfr).

The ip-spec is either a plain IP address (IPv4 or IPv6), or can be a subnet of the form 1.2.3.4/24, or masked
like 1.2.3.4&255.255.255.0 or a range of the form 1.2.3.4-1.2.3.25. A port number can be added using
a suffix of @number, for example 1.2.3.4@5300 or 1.2.3.4/24@5300 for port 5300. Note the ip-spec ranges
do not use spaces around the the /, &, @ and - symbols.

outgoing-interface: <ip-address> Access control list. The listed address is used to request AXFR|IXFR (in case of
a secondary) or used to send notifies (in case of a primary).

The ip-address is a plain IP address (IPv4 or IPv6). A port number can be added using a suffix of @number, for
example 1.2.3.4@5300.

max-refresh-time: <seconds> Limit refresh time for secondary zones. This is the timer which checks to see if the
zone has to be refetched when it expires. Normally the value from the SOA record is used, but this option restricts
that value.

min-refresh-time: <seconds> Limit refresh time for secondary zones.

max-retry-time: <seconds> Limit retry time for secondary zones. This is the timer which retries after a failed fetch
attempt for the zone. Normally the value from the SOA record is used, followed by an exponential backoff, but
this option restricts that value.

min-retry-time: <seconds> Limit retry time for secondary zones.

min-expire-time: <seconds or refresh+retry+1> Limit expire time for secondary zones. The value can be expressed
either by a number of seconds, or the string “refresh+retry+1”. With the latter the expire time will be lower bound
to the refresh plus the retry value from the SOA record, plus 1. The refresh and retry values will be subject to
the bounds configured with max-refresh-time, min-refresh-time, max-retry-time and min-retry-time if given.

zonestats: <name> When compiled with --enable-zone-stats NSD can collect statistics per zone. This name
gives the group where statistics are added to. The groups are output from nsd-control stats and stats_noreset.
Default is "". You can use "%s" to use the name of the zone to track its statistics. If not compiled in, the option
can be given but is ignored.
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include-pattern: <pattern-name> The options from the given pattern are included at this point. The referenced
pattern must be defined above this zone.

rrl-whitelist: <rrltype> This option causes queries of this rrltype to be whitelisted, for this zone. They receive the
whitelist-ratelimit. You can give multiple lines, each enables a new rrltype to be whitelisted for the zone. Default
has none whitelisted. The rrl-type is the query classification that the NSD RRL employs to make different types
not interfere with one another. The types are logged in the loglines when a subnet is blocked (in verbosity 2).
The RRL classification types are: nxdomain, error, referral, any, rrsig, wildcard, nodata, dnskey, positive, all.

multi-master-check: <yes or no> Default no. If enabled, checks all masters for the last version. It uses the higher
version of all the configured masters. Useful if you have multiple masters that have different version numbers
served.

16.4.5 Key Declarations

The key: clause establishes a key for use in access control lists. It has the following attributes.

name: <string> The key name. Used to refer to this key in the access control list. The key name has to be correct for
tsig to work. This is because the key name is output on the wire.

algorithm: <string> Authentication algorithm for this key. Such as hmac-md5, hmac-sha1, hmac-sha224, hmac-
sha256, hmac-sha384 and hmac-sha512. Can also be abbreviated as ‘sha1’, ‘sha256’. Default is sha256. Algo-
rithms are only available when they were compiled in (available in the crypto library).

secret: <base64 blob> The base64 encoded shared secret. It is possible to put the secret: declaration (and base64
blob) into a different file, and then to include: that file. In this way the key secret and the rest of the configuration
file, which may have different security policies, can be split apart. The content of the secret is the agreed base64
secret content. To make it up, enter a password (its length must be a multiple of 4 characters, A-Za-z0-9), or use
dev-random output through a base64 encode filter.

16.4.6 TLS Auth Declarations

The tls-auth: clause establishes authentication attributes to use when authenticating the far end of an outgoing TLS
connection used in access control lists for XFR-over-TLS. It has the following attributes.

name: <string> The tls-auth name. Used to refer to this TLS authentication information in the access control list.

auth-domain-name: <string> The authentication domain name as defined in RFC 8310.

client-cert: <file name of clientcert.pem> If you want to use mutual TLS authentication, this is where the client
certificates can be configured that NSD uses to connect to the upstream server to download the zone. The client
public key pem cert file can be configured here. Also configure a private key with client-key.

client-key: <file name of clientkey.key> If you want to use mutual TLS authentication, the private key file can be
configured here for the client authentication.

client-key-pw: <string> If the client-key file uses a password to decrypt the key before it can be used, then the pass-
word can be specified here as a string. It is possible to include other config files with the include: option, and
this can be used to move that sensitive data to another file, if you wish.
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16.4.7 DNSTAP Logging Options

DNSTAP support, when compiled in, is enabled in the dnstap: section. This starts a collector process that writes the
log information to the destination.

dnstap-enable: <yes or no> If dnstap is enabled. Default no. If yes, it connects to the dnstap server and if any of the
dnstap-log-..-messages options is enabled it sends logs for those messages to the server.

dnstap-socket-path: <file name> Sets the unix socket file name for connecting to the server that is listening on that
socket. Default is "/var/run/nsd-dnstap.sock".

dnstap-send-identity: <yes or no> If enabled, the server identity is included in the log messages. Default is no.

dnstap-send-version: <yes or no> If enabled, the server version if included in the log messages. Default is no.

dnstap-identity: <string> The identity to send with messages, if "" the hostname is used. Default is "".

dnstap-version: <string> The version to send with messages, if "" the package version is used. Default is "".

dnstap-log-auth-query-messages: <yes or no> Enable to log auth query messages. Default is no. These are client
queries to NSD.

dnstap-log-auth-response-messages: <yes or no> Enable to log auth response messages. Default is no. These are
responses from NSD to clients.

16.5 NSD Configuration for BIND9 Hackers

BIND9 is a name server implementation with its own configuration file format, named.conf(5). BIND9 types zones as
‘Master’ or ‘Slave’.

16.5.1 Slave zones

For a slave zone, the master servers are listed. The master servers are queried for zone data, and are listened to for
update notifications. In NSD these two properties need to be configured separately, by list- ing the master address in
allow-notify and request-xfr statements.

In BIND9 you only need to provide allow-notify elements for any extra sources of notifications (i.e. the operators),
NSD needs to have al- low-notify for both masters and operators. BIND9 allows additional transfer sources, in NSD
you list those as request-xfr.

Here is an example of a slave zone in BIND9 syntax.

# Config file for example.org options {
dnssec-enable yes;

};

key tsig.example.org. {
algorithm hmac-md5;
secret "aaaaaabbbbbbccccccdddddd";

};

server 162.0.4.49 {
keys { tsig.example.org. ; };

};

zone "example.org" {
(continues on next page)
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(continued from previous page)

type slave;
file "secondary/example.org.signed";
masters { 162.0.4.49; };

};

For NSD, DNSSEC is enabled automatically for zones that are signed. The dnssec-enable statement in the options
clause is not needed. In NSD keys are associated with an IP address in the access control list statement, therefore the
server{} statement is not needed. Below is the same example in an NSD config file.

# Config file for example.org
key:

name: tsig.example.org.
algorithm: hmac-md5
secret: "aaaaaabbbbbbccccccdddddd"

zone:
name: "example.org"
zonefile: "secondary/example.org.signed"
# the master is allowed to notify and will provide zone data.
allow-notify: 162.0.4.49 NOKEY
request-xfr: 162.0.4.49 tsig.example.org.

Notice that the master is listed twice, once to allow it to send notifies to this slave server and once to tell the slave server
where to look for updates zone data. More allow-notify and request-xfr lines can be added to specify more masters.

It is possible to specify extra allow-notify lines for addresses that are also allowed to send notifications to this slave
server.

16.5.2 Master zones

For a master zone in BIND9, the slave servers are listed. These slave servers are sent notifications of updated and are
allowed to request transfer of the zone data. In NSD these two properties need to be configured separately.

Here is an example of a master zone in BIND9 syntax.

zone "example.nl" {
type master;
file "example.nl";

};

In NSD syntax this becomes:

zone:
name: "example.nl"
zonefile: "example.nl"
# allow anybody to request xfr.
provide-xfr: 0.0.0.0/0 NOKEY
provide-xfr: ::0/0 NOKEY

# to list a slave server you would in general give
# provide-xfr: 1.2.3.4 tsig-key.name.
# notify: 1.2.3.4 NOKEY

50 Chapter 16. nsd.conf(5)



NSD User Manual, Release 4.3.9

16.5.3 Other

NSD is an authoritative only DNS server. This means that it is meant as a primary or secondary server for zones,
providing DNS data to DNS resolvers and caches. BIND9 can function as an authoritative DNS server, the configuration
options for that are compared with those for NSD in this section. However, BIND9 can also function as a resolver or
cache. The configuration options that BIND9 has for the resolver or caching thus have no equivalents for NSD.

16.6 Files

/var/db/nsd/nsd.db default NSD database

/etc/nsd/nsd.conf default NSD configuration file

16.7 See Also

nsd(8), nsd-checkconf(8), nsd-control(8)

16.8 Bugs

nsd.conf is parsed by a primitive parser, error messages may not be to the point.
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CHAPTER

SEVENTEEN

NSD-CONTROL(8)

17.1 Synopsis

nsd-control [-c cfgfile] [-s server] command

17.2 Description

nsd-control performs remote administration on the nsd(8) DNS server. It reads the configuration file, contacts the
nsd server over TLS, sends the command and displays the result.

The available options are:

-h
Show the version and commandline option help.

-c cfgfile
The config file to read with settings. If not given the default config file /etc/nsd/nsd.conf is used.

-s server[@port]
IPv4 or IPv6 address of the server to contact. If not given, the address is read from the config file.

17.3 Commands

There are several commands that the server understands.

start Start the server. Simply execs nsd(8). The nsd executable is searched for in the PATH set in the environment.
It is started with the config file specified using -c or the default config file.

stop Stop the server. The server daemon exits.

reload [<zone>] Reload zonefiles and reopen logfile. Without argument reads changed zonefiles. With argument
reads the zonefile for the given zone and loads it.

reconfig Reload nsd.conf and apply changes to TSIG keys and configuration patterns, and apply the changes to add
and remove zones that are mentioned in the config. Other changes are not applied, such as listening ip address
and port and chroot, also per-zone statistics are not applied. The pattern updates means that the configuration
options for zones (request-xfr, zonefile, notify, . . . ) are updated. Also new patterns are available for use with the
addzone command.

repattern Same as the reconfig option.

log_reopen Reopen the logfile, for log rotate that wants to move the logfile away and create a new logfile. The log can
also be reopened with kill -HUP (which also reloads all zonefiles).
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status Display server status. Exit code 3 if not running (the connection to the port is refused), 1 on error, 0 if running.

stats Output a sequence of name=value lines with statistics information, requires NSD to be compiled with this option
enabled.

stats_noreset Same as stats, but does not zero the counters.

addzone <zone name> <pattern name> Add a new zone to the running server. The zone is added to the zonelist file
on disk, so it stays after a restart. The pattern name determines the options for the new zone. For slave zones a
zone transfer is immediately attempted. For zones with a zonefile, the zone file is attempted to be read in.

delzone <zone name> Remove the zone from the running server. The zone is removed from the zonelist file on disk,
from the nsd.db file and from the memory. If it had a zonefile, this remains (but may be outdated). Zones
configured inside nsd.conf itself cannot be removed this way because the daemon does not write to the nsd.conf
file, you need to add such zones to the zonelist file to be able to delete them with the delzone command.

changezone <zone name> <pattern name> Change a zone to use the pattern for options. The zone is deleted and
added in one operation, changing it to use the new pattern for the zone options. Zones configured in nsd.conf
cannot be changed like this, instead edit the nsd.conf (or the included file in nsd.conf) and reconfig.

addzones Add zones read from stdin of nsd-control. Input is read per line, with name space patternname on a line.
For bulk additions.

delzones Remove zones read from stdin of nsd-control. Input is one name per line. For bulk removals.

write [<zone>] Write zonefiles to disk, or the given zonefile to disk. Zones that have changed (via AXFR or IXFR) are
written, or if the zonefile has not been created yet then it is created. Directory components of the zonefile path
are created if necessary. With argument that zone is written if it was modified, without argument, all modified
zones are written.

notify [<zone>] Send NOTIFY messages to slave servers. Sends to the IP addresses configured in the ‘notify:’ lists
for the master zones hosted on this server. Usually NSD sends NOTIFY messages right away when a master zone
serial is updated. If a zone is given, notifies are sent for that zone. These slave servers are supposed to initiate
a zone transfer request later (to this server or another master), this can be allowed via the ‘provide-xfr:’ acl list
configuration. With argument that zone is processed, without argument, all zones are processed.

transfer [<zone>] Attempt to update slave zones that are hosted on this server by contacting the masters. The masters
are configured via ‘request-xfr:’ lists. If a zone is given, that zone is updated. Usually NSD receives a NOTIFY
from the masters (configured via ‘allow-notify:’ acl list) that a new zone serial has to be transferred. For zones
with no content, NSD may have backed off from asking often because the masters did not respond, but this
command will reset the backoff to its initial timeout, for frequent retries. With argument that zone is transferred,
without argument, all zones are transferred.

force_transfer [<zone>] Force update slave zones that are hosted on this server. Even if the master hosts the same
serial number of the zone, a full AXFR is performed to fetch it. If you want to use IXFR and check that the serial
number increases, use the ‘transfer’ command. With argument that zone is transferred, without argument, all
zones are transferred.

zonestatus [<zone>] Print state of the zone, the serial numbers and since when they have been acquired. Also prints
the notify action (to which server), and zone transfer (and from which master) if there is activity right now. The
state of the zone is printed as: ‘master’ (master zones), ‘ok’ (slave zone is up-to-date), ‘expired’ (slave zone
has expired), ‘refreshing’ (slave zone has transfers active). The serial numbers printed are the ‘served-serial’
(currently active), the ‘commit-serial’ (is in reload), the ‘notified-serial’ (got notify, busy fetching the data). The
serial numbers are only printed if such a serial number is available. With argument that zone is printed, without
argument, all zones are printed.

serverpid Prints the PID of the server process. This is used for statistics (and only works when NSD is compiled with
statistics en- abled). This pid is not for sending unix signals, use the pid from nsd.pid for that, that pid is also
stable.

verbosity <number> Change logging verbosity.
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print_tsig [<key_name>] print the secret and algorithm for the TSIG key with that name. Or list all the tsig keys with
their name, secret and algorithm.

update_tsig <name> <secret> Change existing TSIG key with name to the new secret. The secret is a base64 encoded
string. The changes are only in-memory and are gone next restart, for lasting changes edit the nsd.conf file or a
file included from it.

add_tsig <name> <secret> [algo] Add a new TSIG key with the given name, secret and algorithm. Without algorithm
a default (hmac-sha256) algorithm is used. The secret is a base64 encoded string. The changes are only in-
memory and are gone next restart, for lasting changes edit the nsd.conf file or a file included from it.

assoc_tsig <zone> <key_name> Associate the zone with the given tsig. The access control lists for notify, allow-
notify, provide-xfr and request-xfr are adjusted to use the given key.

del_tsig <key_name> Delete the TSIG key with the given name. Prints error if the key is still in use by some zone.
The changes are only in-memory and are gone next restart, for lasting changes edit the nsd.conf file or a file
included from it.

add_cookie_secret <secret> Add or replace a cookie secret persistently. <secret> needs to be an 128 bit hex string.

Cookie secrets can be either active or staging. Active cookie secrets are used to create DNS Cookies, but verifi-
cation of a DNS Cookie succeeds with any of the active or staging cookie secrets. The state of the current cookie
secrets can be printed with the print_cookie_secrets command.

When there are no cookie secrets configured yet, the <secret> is added as active. If there is already an active
cookie secret, the <secret> is added as staging or replacing an existing staging secret.

To “roll” a cookie secret used in an anycast set. The new secret has to be added as staging secret to all nodes
in the anycast set. When all nodes can verify DNS Cookies with the new secret, the new secret can be activated
with the activate_cookie_secret command. After all nodes have the new secret active for at least one hour,
the previous secret can be dropped with the drop_cookie_secret command.

Persistence is accomplished by writing to a file which if configured with the cookie-secret-file option in the
server section of the config file. The default value for that is: /etc/nsd/nsd_cookiesecrets.txt.

drop_cookie_secret Drop the staging cookie secret.

activate_cookie_secret Make the current staging cookie secret active, and the current active cookie secret staging.

print_cookie_secrets Show the current configured cookie secrets with their status.

17.4 Exit Code

The nsd-control program exits with status code 1 on error, 0 on success.

17.5 Set Up

The setup requires a self-signed certificate and private keys for both the server and client. The script
nsd-control-setup generates these in the default run directory, or with -d in another directory. If you change
the access control permissions on the key files you can decide who can use nsd-control, by default owner and group
but not all users. The script preserves private keys present in the directory. After running the script as root, turn on
control-enable in nsd.conf.
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17.6 Statistics Counters

The stats command shows a number of statistic counters.

num.queries number of queries received (the tls, tcp and udp queries added up).

serverX.queries number of queries handled by the server process. The number of server processes is set with the
config statement server-count.

time.boot uptime in seconds since the server was started. With fractional seconds.

time.elapsed time since the last stats report, in seconds. With fractional seconds. Can be zero if polled quickly and
the previous stats command resets the counters, so that the next gets a fully zero, and zero elapsed time, report.

size.db.disk size of nsd.db on disk, in bytes.

size.db.mem size of the DNS database in memory, in bytes.

size.xfrd.mem size of memory for zone transfers and notifies in xfrd process, excludes TSIG data, in bytes.

size.config.disk size of zonelist file on disk, excludes the nsd.conf size, in bytes.

size.config.mem size of config data in memory, kept twice in server and xfrd process, in bytes.

num.type.X number of queries with this query type.

num.opcode.X number of queries with this opcode.

num.class.X number of queries with this query class.

num.rcode.X number of answers that carried this return code.

num.edns number of queries with EDNS OPT.

num.ednserr number of queries which failed EDNS parse.

num.udp number of queries over UDP ip4.

num.udp6 number of queries over UDP ip6.

num.tcp number of connections over TCP ip4.

num.tcp6 number of connections over TCP ip6.

num.tls number of connections over TLS ip4. TLS queries are not part of num.tcp.

num.tls6 number of connections over TLS ip6. TLS queries are not part of num.tcp6.

num.answer_wo_aa number of answers with NOERROR rcode and without AA flag, this includes the referrals.

num.rxerr number of queries for which the receive failed.

num.txerr number of answers for which the transmit failed.

num.raxfr number of AXFR requests from clients (that got served with reply).

num.truncated number of answers with TC flag set.

num.dropped number of queries that were dropped because they failed sanity check.

zone.master number of master zones served. These are zones with no ‘request-xfr:’ entries.

zone.slave number of slave zones served. These are zones with ‘request-xfr’ entries.
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17.7 Files

/etc/nsd/nsd.conf nsd configuration file.

/etc/nsd directory with private keys (nsd_server.key and nsd_control.key) and self-signed certificates (nsd_server.pem
and nsd_control.pem).

17.8 See Also

nsd.conf(5), nsd(8), nsd-checkconf(8)
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EIGHTEEN

CONFIGURE OPTIONS

NSD can be configured using GNU autoconf’s configure script. In addition to standard configure options, one may use
the following:

CC=compiler Specify the C compiler. The default is gcc or cc. The compiler must support ANSI C89.

CPPFLAGS=flags Specify the C preprocessor flags. Such as -I<includedir>.

CFLAGS=flags Specify the C compiler flags. These include code generation, optimisation, warning, and debugging
flags. These flags are also passed to the linker.

The default for gcc is -g -O2.

LD=linker Specify the linker (defaults to the C compiler).

LDFLAGS=flags Specify linker flags.

LIBS=libs Specify additional libraries to link with.

--enable-root-server Configure NSD as a root server. Unless this option is specified, NSD will refuse
to serve the . zone as a misconfiguration safeguard.

--disable-ipv6 Disables IPv6 support in NSD.

--enable-checking Enable some internal development checks. Useful if you want to modify NSD.
This option enables the standard C “assert” macro and compiler warnings.

This will instruct NSD to be stricter when validating its input. This could lead to
a reduced service level.

--enable-bind8-stats Enables BIND8-like statistics.

--enable-ratelimit Enables rate limiting, based on query name, type and source.

--enable-draft-rrtypes Enables draft RRtypes.

--with-configdir=dir Specified, NSD configuration directory, default /etc/nsd.

--with-nsd_conf_file=path Pathname to the NSD configuration file, default /etc/nsd/nsd.conf.

--with-pidfile=path Pathname to the NSD pidfile, default is platform specific, mostly /var/run/nsd.
pid.

--with-dbfile=path Pathname to the NSD database, default is /etc/nsd/nsd.db.

--with-zonesdir=dir NSD default location for master zone files, default /etc/nsd/.

--with-user=username User name or ID to answer the queries with, default is nsd.

--with-facility=facility Specify the syslog facility to use. The default is LOG_DAEMON. See the sys-
log(3) manual page for the available facilities.
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--with-libevent=path Specity the location of the libevent library (or libev). --with-libevent=no
uses a builtin portable implementation (select()).

--with-ssl=path Specify the location of the OpenSSL libraries. OpenSSL 0.9.7 or higher is re-
quired for TSIG support.

--with-start_priority=number Startup priority for NSD.

--with-kill_priority=number Shutdown priority for NSD.

--with-tcp-timeout=number Set the default TCP timeout (in seconds). The default is 120 seconds.

--disable-nsec3 Disable NSEC3 support. With NSEC3 support enabled, very large zones, also
non-NSEC3 zones, use about 20% more memory.

--disable-minimal-responses Disable minimal responses. If disabled, responses are more likely to get
truncated, resulting in TCP fallback. When enabled (by default) NSD will leave
out RRsets to make responses fit inside one datagram, but for shorter responses
the full normal response is carried.

--disable-largefile Disable large file support (64 bit file lengths). Makes off_t a 32bit length during
compilation.
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NINETEEN

DIAGNOSING NSD LOG ENTRIES

NSD will print log messages to the system log (or logfile: configuration entry). Some of these messages are covered
here.

Reload process <pid> failed with status <s>, continuing with old database This log message indicates the reload
process of NSD has failed for some reason. This can be anything from a missing database file to internal errors.

snipping off trailing partial part of <ixfr.db> The file ixfr.db contains only part of expected data. The corruption
is removed by snipping off the trailing part.

memory recyclebin holds <num> bytes This is printed for every reload. NSD allocates and deallocates memory to
service IXFR updates. The recycle bin holds deallocated memory ready for future use. If the number grows too
large, a restart resets it.

xfrd: max number of tcp connections (32) reached This line is printed when more than 32 zones need a zone trans-
fer at the same time. The value is a compile constant (xfrd-tcp.h), but if this happens often for you, we could
make this a config option. NSD will reuse existing TCP connections to the same primary (determined by IP
address) to transfer up to 64k zones from that primary. Thus this error should only happen with more than 32
primaries or more than 64*32=2M zones that need to be updated at the same time.

If this happens, more zones have to wait until a zone transfer completes (or is aborted) before they can have a
zone transfer too. This waiting list has no size limit.

error: <zone> NSEC3PARAM entry <num> has unknown hash algo <number> This error means that the zone
has NSEC3 chain(s) with hash algorithms that are not supported by this version of NSD, and thus cannot be
served by NSD. If there are also no NSECs or NSEC3 chain(s) with known hash algorithms, NSD will not be
able to serve DNSSEC authenticated denials for the zone.
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CHAPTER

TWENTY

GRAMMAR FOR DNS ZONE FILES

Note: It is near impossible to write a clean lexer/grammar for DNS (RFC 1035) zone files. At first it looks like it is
easy to make such a beast, but when you start implementing it the details make it messy.

Since as early as NSD 1.4, the parser relies on Bison and Flex, tools for building programs that handle structured input.
Compared to the previous implementation there is a slight decrease in speed (10-20%), but as the zone compiler is not
critical to the performance of NSD, this not too relevant. The lexer part is located in the file zlexer.lex, the grammar is
in zparser.y.

20.1 Zone File Lexer

Finding a good grammar and lexer for BIND zone files is rather hard. There are no real keywords and the meaning
of most of the strings depends on the position relative to the other strings. An example, the following is a valid SOA
record:

$ORIGIN example.org.
SOA soa soa ( 1 2 3 4 5 6 )

This SOA records means the administrator has an email address of soa@example.org. and the first nameserver is
named soa.example.org. Both completely valid. The numbers are of course totally bogus.

Another example would be:

$ORIGIN example.org.
SOA soa soa ( 1 2 ) ( 3 4 ) ( 5 ) ( 6 )

The parsing of parentheses was also not trivial. Whitespace is also significant in zonefiles. The TAB before SOA has
to be returned as previous_domain token by the lexer. Newlines inside parentheses are returned as SPACE which works
but required some changes in the definitions of the resource records.

As shown above a simple grep -i for SOA does not do the trick. The lexer takes care of this tricky part by using
an extra variable in_rr which is an enum containing: outside, expecting_dname, after_dname, reading_type.
The semantics are as follows:

• outside, not in an RR (start of a line or a $-directive);

• expecting_dname, parse owner name of RR;

• after_dname, parse ttl, class;

• reading_type, we expect the RR type now;
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With in_rr the lexer can say that in the first example above the first SOA is the actual record type, because it is located
after a TAB. After we have found the TAB we set in_rr to after_dname which means we actually are expecting a
RR type.

Again this is also not trivial because the class (IN) and TTL are also optional, if there are not specified we should
substitute the current defaults from the zone we are parsing (this happens in the grammar). A DNS zone file is further
complicated by the unknown RR record types.

20.2 Zone File Grammar

After the lexer was written the grammar itself is quite clean and nice. The basic idea is that every RR consists of single
line (the parentheses are handled in the lexer - so this really is the case). If a line is not a RR it is either a comment,
empty or a $-directive. Some $-directives are handled inside the lexer ($INCLUDE) while others ($ORIGIN) must be
dealt with inside the grammer.

An RR is defined as:

rr: ORIGIN SP rrrest

and:

rrrset: classttl rtype

And then we have a whole list of:

rtype: TXT sp rdata_txt
| DS sp rdata_ds
| AAAA sp rdata_aaaa

which are then parsed by using the rdata_ rule. Shown here is the one for the SOA:

rdata_soa: dname sp dname sp STR sp STR sp STR sp STR sp STR trail
{

/* convert the soa data */
zadd_rdata_domain( current_parser, $1); /* prim. ns */
zadd_rdata_domain( current_parser, $3); /* email */
zadd_rdata_wireformat( current_parser, \

zparser_conv_rdata_period(zone_region, $5.str) ); /* serial */
zadd_rdata_wireformat( current_parser, \

zparser_conv_rdata_period(zone_region, $7.str) ); /* refresh */
zadd_rdata_wireformat( current_parser, \

zparser_conv_rdata_period(zone_region, $9.str) ); /* retry */
zadd_rdata_wireformat( current_parser, \

zparser_conv_rdata_period(zone_region, $11.str) ); /* expire */
zadd_rdata_wireformat( current_parser, \

zparser_conv_rdata_period(zone_region, $13.str) ); /* minimum */

/* XXX also store the minium in case of no TTL? */
if ( (current_parser->minimum = zparser_ttl2int($11.str) ) == -1 )

current_parser->minimum = DEFAULT_TTL;
};

The semantic actions in the grammer store the RR data for processing by the zone compiler. The resulting database is
then used by NSD the serve the data.
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